BackgroundZika virus (ZIKV; genus Flavivirus, family Flaviviridae) is maintained in a zoonotic cycle between arboreal Aedes spp. mosquitoes and nonhuman primates in African and Asian forests. Spillover into humans has been documented in both regions and the virus is currently responsible for a large outbreak in French Polynesia. ZIKV amplifications are frequent in southeastern Senegal but little is known about their seasonal and spatial dynamics. The aim of this paper is to describe the spatio-temporal patterns of the 2011 ZIKV amplification in southeastern Senegal.Methodology/FindingsMosquitoes were collected monthly from April to December 2011 except during July. Each evening from 18∶00 to 21∶00 hrs landing collections were performed by teams of 3 persons working simultaneously in forest (canopy and ground), savannah, agriculture, village (indoor and outdoor) and barren land cover sites. Mosquitoes were tested for virus infection by virus isolation and RT-PCR. ZIKV was detected in 31 of the 1,700 mosquito pools (11,247 mosquitoes) tested: Ae. furcifer (5), Ae. luteocephalus (5), Ae. africanus (5), Ae. vittatus (3), Ae. taylori, Ae. dalzieli, Ae. hirsutus and Ae. metallicus (2 each) and Ae. aegypti, Ae. unilinaetus, Ma. uniformis, Cx. perfuscus and An. coustani (1 pool each) collected in June (3), September (10), October (11), November (6) and December (1). ZIKV was detected from mosquitoes collected in all land cover classes except indoor locations within villages. The virus was detected in only one of the ten villages investigated.Conclusions/SignificanceThis ZIKV amplification was widespread in the Kédougou area, involved several mosquito species as probable vectors, and encompassed all investigated land cover classes except indoor locations within villages. Aedes furcifer males and Aedes vittatus were found infected within a village, thus these species are probably involved in the transmission of Zika virus to humans in this environment.
The risk of human infection with sylvatic chikungunya (CHIKV) virus was assessed in a focus of sylvatic arbovirus circulation in Senegal by investigating distribution and abundance of anthropophilic Aedes mosquitoes, as well as the abundance and distribution of CHIKV in these mosquitoes. A 1650 km2 area was classified into five land cover classes: forest, barren, savanna, agriculture and village. A total of 39,799 mosquitoes was sampled from all classes using human landing collections between June 2009 and January 2010. Mosquito diversity was extremely high, and overall vector abundance peaked at the start of the rainy season. CHIKV was detected in 42 mosquito pools. Our data suggest that Aedes furcifer, which occurred abundantly in all land cover classes and landed frequently on humans in villages outside of houses, is probably the major bridge vector responsible for the spillover of sylvatic CHIKV to humans.
For land degradation monitoring and assessment (M&A) to be accurate and for sustainable land management (SLM) to be effective, it is necessary to incorporate multiple knowledges using a variety of methods and scales, and this must include the (potentially conflicting) perspectives of those who use the land. This paper presents a hybrid methodological framework that builds on approaches developed by UN Food & Agriculture Organisation's land degradation Assessment in Drylands (LADA), the World Conservation Approaches and Technologies (WOCAT) programme and the Dryland Development Paradigm (DDP), and is being applied internationally through the EU-funded DESIRE project. The framework suggests that M&A should determine the progress of SLM towards meeting sustainability goals, with results continually and iteratively enhancing SLM decisions. The framework is divided into four generic themes: (i) establishing land degradation and SLM context and sustainability goals; (ii) identifying, evaluating and selecting SLM strategies; (iii) selecting land degradation and SLM indicators and (iv) applying SLM options and monitoring land degradation and progress towards sustainability goals. This approach incorporates multiple knowledge sources and types (including land manager perspectives) from local to national and international scales. In doing so, it aims to provide outputs for policy-makers and land managers that have the potential to enhance the sustainability of land management in drylands, from the field scale to the region, and to national and international levels. The paper draws on operational experience from across the DESIRE project to break the four themes into a series of methodological steps, and provides examples of the range of tools and methods that can be used to operationalise each of these steps.
The mosquitoes Aedes aegypti (L.) and Ae. albopictus Skuse are the major vectors of dengue, Zika, yellow fever, and chikungunya viruses worldwide. Wolbachia, an endosymbiotic bacterium present in many insects, is being utilized in novel vector control strategies to manipulate mosquito life history and vector competence to curb virus transmission. Earlier studies have found that Wolbachia is commonly detected in Ae. albopictus but rarely detected in Ae. aegypti. In this study, we used a two‐step PCR assay to detect Wolbachia in wild‐collected samples of Ae. aegypti. The PCR products were sequenced to validate amplicons and identify Wolbachia strains. A loop‐mediated isothermal amplification (LAMP) assay was developed and used for detecting Wolbachia in selected mosquito specimens as well. We found Wolbachia in 85/148 (57.4%) wild Ae. aegypti specimens from various cities in New Mexico, and in 2/46 (4.3%) from St. Augustine, Florida. Wolbachia was not detected in 94 samples of Ae. aegypti from Deer Park, Harris County, Texas. Wolbachia detected in Ae. aegypti from both New Mexico and Florida was the wAlbB strain of Wolbachia pipientis. A Wolbachia‐positive colony of Ae. aegypti was established from pupae collected in Las Cruces, New Mexico, in 2018. The infected females of this strain transmitted Wolbachia to their progeny when crossed with males of Rockefeller strain of Ae. aegypti, which does not carry Wolbachia. In contrast, none of the progeny of Las Cruces males mated to Rockefeller females were infected with Wolbachia.
The emergence of Zika virus (ZIKV) in Latin America brought to the fore longstanding concerns that forests bordering urban areas may provide a gateway for arbovirus spillback from humans to wildlife. To bridge urban and sylvatic transmission cycles, mosquitoes must co-occur with both humans and potential wildlife hosts, such as monkeys, in space and time. We deployed BG-Sentinel traps at heights of 0, 5, 10, and 15 m in trees in a rainforest reserve bordering Manaus, Brazil, to characterize the vertical stratification of mosquitoes and their associations with microclimate and to identify potential bridge vectors. Haemagogus janthinomys and Sabethes chloropterus, two known flavivirus vectors, showed significant stratification, occurring most frequently above the ground. Psorophora amazonica, a poorly studied anthropophilic species of unknown vector status, showed no stratification and was the most abundant species at all heights sampled. High temperatures and low humidity are common features of forest edges and microclimate analyses revealed negative associations between minimum relative humidity, which was inversely correlated with maximum temperature, and the occurrence of Haemagogus and Sabethes mosquitoes. In this reserve, human habitations border the forest while tamarin and capuchin monkeys are also common to edge habitats, creating opportunities for the spillback of mosquito-borne viruses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.