A diffusive gradient in thin films (DGT) technique was employed in characterization of the particulate matter related to the urban area suffering from heavy traffic. Kinetics of mobilization metals fluxes from the metal-contaminated particulate matter was investigated. To monitor responses of the particulate matter sample, DGT probes of various thickness of diffusion layer were deployed in aqueous model suspensions of the particulate matter for different time periods. Particulate matter samples and exposed DGT resin gels were decomposed in a mixture of nitric and hydrochloric acid in a microwave pressurized PTFE-lined system. Total content of some traffic-related elements (Cd, Co, Cu, Mo, Ni, Pb, Pd, Pt, Rh, Sb, and V) was determined by inductively coupled plasma mass spectrometry. DGT measurements revealed that two metals pools associated with particles could be recognized, which can be characterized as high soluble fraction and almost insoluble fraction. DGT-measured metal fluxes from the labile pool showed significant difference in mobilization and resupply fluxes of individual selected elements, which might reflect the origin of selected metals and their speciation in particulate matter. The DGT technique can be applied as a useful tool for characterization of metals mobilization from the particulate matter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.