Measurable residual disease (MRD) is an important biomarker in acute myeloid leukemia (AML) that is used for prognostic, predictive, monitoring, and efficacy-response assessments. The European LeukemiaNet (ELN) MRD working party evaluates standardization and harmonization of MRD in an ongoing manner and has updated the 2018 ELN MRD recommendations based on significant developments in the field. New and revised recommendations were established during in-person and online meetings, and a two-stage Delphi poll was conducted to optimize consensus. All recommendations are graded by levels of evidence and agreement. Major changes include technical specifications for next generation sequencing (NGS)-based MRD testing and integrative assessments of MRD irrespective of technology. Other topics include use of MRD as a prognostic and surrogate endpoint for drug testing; selection of the technique, material, and appropriate time points for MRD assessment; and clinical implications of MRD assessment. In addition to technical recommendations for flow- and molecular- MRD analysis, we provide MRD thresholds and define MRD response, and detail how MRD results should be reported and combined if several techniques are used. MRD assessment in AML is complex and clinically relevant, and standardized approaches to application, interpretation, technical conduct, and reporting are of critical importance.
Organelle-targeted
photosensitization represents a promising approach
in photodynamic therapy where the design of the active photosensitizer
(PS) is very crucial. In this work, we developed a macromolecular
PS with multiple copies of mitochondria-targeting groups and ruthenium
complexes that displays highest phototoxicity toward several cancerous
cell lines. In particular, enhanced anticancer activity was demonstrated
in acute myeloid leukemia cell lines, where significant impairment
of proliferation and clonogenicity occurs. Finally, attractive two-photon
absorbing properties further underlined the great significance of
this PS for mitochondria targeted PDT applications in deep tissue
cancer therapy.
The molecular characterization of leukemia has demonstrated that genetic alterations in the leukemic clone frequently fall into 2 classes, those affecting transcription factors (e.g., AML1-ETO) and mutations affecting genes involved in signal transduction (e.g., activating mutations of FLT3 and KIT). This finding has favored a model of leukemogenesis in which the collaboration of these 2 classes of genetic alterations is necessary for the malignant transformation of hematopoietic progenitor cells. The model is supported by experimental data indicating that AML1-ETO and FLT3 length mutation (FLT3-LM), 2 of the most frequent genetic alterations in AML, are both insufficient on their own to cause leukemia in animal models. Here we report that AML1-ETO collaborates with FLT3-LM in inducing acute leukemia in a murine BM transplantation model. Moreover, in a series of 135 patients with AML1-ETO-positive AML, the most frequently identified class of additional mutations affected genes involved in signal transduction pathways including FLT3-LM or mutations of KIT and NRAS. These data support the concept of oncogenic cooperation between AML1-ETO and a class of activating mutations, recurrently found in patients with t(8;21), and provide a rationale for therapies targeting signal transduction pathways in AML1-ETO-positive leukemias.
IntroductionThe cloning of recurring chromosomal translocations and, increasingly, the molecular characterization of point mutations in patients with acute leukemia have substantially contributed to the understanding of the pathogenesis of this disease. In acute myeloid leukemia (AML), chromosomal translocations most frequently target transcription factors involved in the regulation of normal hematopoietic differentiation, whereas point mutations often affect genes involved in signal transduction pathways associated with cell proliferation (1-3). The systematic analyses of genetic alterations in patients with AML have demonstrated that genetic lesions of more than 1 transcriptional regulator, such as AML1-ETO (RUNX1-MTG8), HOX fusion genes, or PML-RARA, rarely occur in the leukemic clone. Similarly, patients with concurrent mutations of FLT3, KIT, or NRAS are rare. However, there are numerous examples in which fusion genes are identified together with activating mutations of receptor tyrosine kinases, exemplified by PML-RARA and the FLT3 length mutation (FLT3-LM), which occur together in up to 35% of all patients with t(15;17)-positive AML (4).
HOX genes, notably members of the HOXA cluster, and HOX cofactors have increasingly been linked to human leukemia. Intriguingly, HOXD13, a member of the HOXD cluster not normally expressed in hematopoietic cells, was recently identified as a partner of NUP98 in a t(2;11) translocation associated with t-AML/MDS. We have now tested directly the leukemogenic potential of the NUP98-HOXD13 t (
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.