Quantitative formal models capture probabilistic behaviour, real-time aspects, or general continuous dynamics. A number of tools support their automatic analysis with respect to dependability or performance properties. QComp 2019 is the first, friendly competition among such tools. It focuses on stochastic formalisms from Markov chains to probabilistic timed automata specified in the Jani model exchange format, and on probabilistic reachability, expected-reward, and steady-state properties. QComp draws its benchmarks from the new Quantitative Verification Benchmark Set. Participating tools, which include probabilistic model checkers and planners as well as simulation-based tools, are evaluated in terms of performance, versatility, and usability. In this paper, we report on the challenges in setting up a quantitative verification competition, present the results of QComp 2019, summarise the lessons learned, and provide an outlook on the features of the next edition of QComp.
We present an extensive collection of quantitative models to facilitate the development, comparison, and benchmarking of new verification algorithms and tools. All models have a formal semantics in terms of extensions of Markov chains, are provided in the Jani format, and are documented by a comprehensive set of metadata. The collection is highly diverse: it includes established probabilistic verification and planning benchmarks, industrial case studies, models of biological systems, dynamic fault trees, and Petri net examples, all originally specified in a variety of modelling languages. It archives detailed tool performance data for each model, enabling immediate comparisons between tools and among tool versions over time. The collection is easy to access via a client-side web application at qcomp.org with powerful search and visualisation features. It can be extended via a Git-based submission process, and is openly accessible according to the terms of the CC-BY license.
Neural networks (NN) are taking over ever more decisions thus far taken by humans, even though verifiable system-level guarantees are far out of reach. Neither is the verification technology available, nor is it even understood what a formal, meaningful, extensible, and scalable testbed might look like for such a technology. The present paper is a modest attempt to improve on both the above aspects. We present a family of formal models that contain basic features of automated decision making contexts and which can be extended with further orthogonal features, ultimately encompassing the scope of autonomous driving. Due to the possibility to model random noise in the decision actuation, each model instance induces a Markov decision process (MDP) as verification object. The NN in this context has the duty to actuate (near-optimal) decisions. From the verification perspective, the externally learnt NN serves as a determinizer of the MDP, the result being a Markov chain which as such is amenable to statistical model checking. The combination of a MDP and a NN encoding the action policy is central to what we call "deep statistical model checking" (DSMC). While being a straightforward extension of statistical model checking, it enables to gain deep insight into questions like "how high is the NN-induced safety risk?", "how good is the NN compared to the optimal policy?" (obtained by model checking the MDP), or "does further training improve the NN?". We report on an implementation of DSMC inside The Modest Toolset in combination with externally learnt NNs, demonstrating the potential of DSMC on various instances of the model family.Authors are listed alphabetically.
Quantitative verification tools compute probabilities, expected rewards, or steady-state values for formal models of stochastic and timed systems. Exact results often cannot be obtained efficiently, so most tools use floating-point arithmetic in iterative algorithms that approximate the quantity of interest. Correctness is thus defined by the desired precision and determines performance. In this paper, we report on the experimental evaluation of these trade-offs performed in QComp 2020: the second friendly competition of tools for the analysis of quantitative formal models. We survey the precision guarantees-ranging from exact rational results to statistical confidence statements-offered by the nine participating tools. They gave rise to a performance evaluation using five tracks with varying correctness criteria, of which we present the results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.