Today’s best solution in compensating for sensorineural hearing loss is the cochlear implant, which electrically stimulates the spiral ganglion neurons in the inner ear. An optimum hearing impression is not ensured due to, among other reasons, a remaining anatomical gap between the spiral ganglion neurons and the implant electrodes. The gap could be bridged via pharmacologically triggered neurite growth toward the electrodes if biomaterials for neurite guidance could be provided. For this, we investigated the suitability of decellularized tissue. We compared three different layers (tunica adventitia, tunica media, and tunica intima) of decellularized equine carotid arteries in a preliminary approach. Rat spiral ganglia explants were cultured on decellularized equine carotid artery layers and neurite sprouting was assessed quantitatively. Generally, neurite outgrowth was possible and it was most prominent on the intima (in average 83 neurites per spiral ganglia explants, followed by the adventitia (62 neurites) and the lowest growth on the media (20 neurites). Thus, decellularized equine carotid arteries showed promising effects on neurite regeneration and can be developed further as efficient biomaterials for neural implants in hearing research.
Galinstan, a liquid metal at room temperature, is a promising material for use in flexible electronics. Since it has been successfully integrated in devices for external use, e.g., as stretchable electronic skin in tactile sensation, the possibility of using galinstan for flexible implant technology comes to mind. Usage of liquid metals in a flexible implant would reduce the risk of broken conductive pathways in the implants and therefore reduce the possibility of implant failure. However, the biocompatibility of the liquid metal under study, i.e., galinstan, has not been proven in state-of-the-art literature. Therefore, in this paper, a material combination of galinstan and silicone rubber is under investigation regarding the success of sterilization methods and to establish biocompatibility testing for an in vivo application. First cell biocompatibility tests (WST-1 assays) and cell toxicity tests (LDH assays) show promising results regarding biocompatibility. This work paves the way towards the successful integration of stretchable devices using liquid metals embedded in a silicone rubber encapsulant for flexible surface electro-cortical grid arrays and other flexible implants.
The ingress of body fluids or their constituents is one of the main causes of failure of active implantable medical devices (AIMDs). Progressive delamination takes its origin at the junctions where exposed electrodes and conductive pathways enter the implant interior. The description of this interface is considered challenging because electrochemically-diffusively coupled processes are involved. Furthermore, standard tests and specimens, with clearly defined 3-phase boundaries (body fluid-metal-polymer), are lacking. We focus on polymers as substrate and encapsulation and present a simple method to fabricate reliable test specimens with defined boundaries. By using silicone rubber as standard material in active implant encapsulation in combination with a metal surface, a corrosion-triggered delamination process was observed that can be universalised towards typical AIMD electrode materials. Copper was used instead of medical grade platinum since surface energies are comparable but corrosion occurs faster. The finding is that two processes are superimposed there: First, diffusion-limited chemical reactions at interfaces that undermine the layer adhesion. The second process is the influx of ions and body fluid components that leave the aqueous phase and migrate through the rubber to internal interfaces. The latter observation is new for active implants. Our mathematical description with a Stefan-model coupled to volume diffusion reproduces the experimental data in good agreement and lends itself to further generalisation.
The gold standard for the partial restoration of sensorineural hearing loss is cochlear implant surgery, which restores patients' speech comprehension. The remaining limitations, e.g., music perception, are partly due to a gap between cochlear implant electrodes and the auditory nerve cells in the modiolus of the inner ear. Reducing this gap will most likely lead to improved cochlear implant performance. To achieve this, a bending or curling mechanism in the electrode array is discussed. We propose a silicone rubber–hydrogel actuator where the hydrogel forms a percolating network in the dorsal silicone rubber compartment of the electrode array to exert bending forces at low volume swelling ratios. A material study of suitable polymers (medical-grade PDMS and hydrogels), including parametrized bending curvature measurements, is presented. The curvature radii measured meet the anatomical needs for positioning electrodes very closely to the modiolus. Besides stage-one biocompatibility according to ISO 10993-5, we also developed and validated a simplified mathematical model for designing hydrogel-actuated CI with modiolar hugging functionality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.