Visually induced self-motion perception (vection) relies on visual-vestibular interaction. Imaging studies using vestibular stimulation have revealed a vestibular thalamo-cortical dominance in the right hemisphere in right handers and the left hemisphere in left handers. We investigated if the behavioural characteristics and neural correlates of vection differ between healthy left and right-handed individuals. 64-channel EEG was recorded while 25 right handers and 25 left handers were exposed to vection-compatible roll motion (coherent motion) and a matched, control condition (incoherent motion). Behavioural characteristics, i.e. vection presence, onset latency, duration and subjective strength, were also recorded. The behavioural characteristics of vection did not differ between left and right handers (all p > 0.05). Fast Fourier Transform (FFT) analysis revealed significant decreases in alpha power during vection-compatible roll motion (p < 0.05). The topography of this decrease was handedness-dependent, with left handers showing a left lateralized centro-parietal decrease and right handers showing a bilateral midline centro-parietal decrease. Further time-frequency analysis, time locked to vection onset, revealed a comparable decrease in alpha power around vection onset and a relative increase in alpha power during ongoing vection, for left and right handers. No effects were observed in theta and beta bands. Left and right-handed individuals show vection-related alpha power decreases at different topographical regions, possibly related to the influence of handednessdependent vestibular dominance in the visual-vestibular interaction that facilitates visual self-motion perception. Despite this difference in where vection-related activity is observed, left and right handers demonstrate comparable perception and underlying alpha band changes during vection.
Distinguishing between verbal and visual working memory processes is complicated by the fact that the strategy used is hard to control or even assess. Many stimuli used in working memory tasks can be processed via verbal or visual coding, such as the digits in the digit span backwards task (DSB). The present study used repetitive transcranial magnetic stimulation (rTMS) to examine the use of visual processing strategies in the DSB. A total of 47 German university students took part in the study, 23 spontaneously using a verbal processing strategy and 24 using a visual strategy. After rTMS to the right occipital cortex, visualizers showed a significantly stronger mean performance decrease compared to verbalizers. The results indicate that the visual cortex is more critical for visualizers compared to verbalizers in the DSB task. Furthermore, the favored processing modality seems to be determined by the preference for a cognitive strategy rather than the presentation modality, and people are aware of the applied strategy. These findings provide insight into inter-individual differences in working memory processing and yield important implications for laboratory studies as well as clinical practice: the stimulus does not necessarily determine the processing and the participant can be aware of that.
Visually induced vection is the illusory sensation of self-motion caused by visual stimuli (such as a dot cloud) that emulate what is seen when an agent moves through space. The sufficient stimulus parameters to generate vection are unknown, but elucidating this is of interest in the study of higher (cognitive) neurological disorders where the relationship between visual and vestibular processing is disturbed. Here, we selectively eliminate that radial motion angle from vection displays and show that vection is still present, although weaker than during normal optic flow, and that vection strength was strikingly variable across individuals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.