Intravascular transplantation of tissue factor (TF)-bearing cells elicits an instant blood-mediated inflammatory reaction (IBMIR) resulting in thrombotic complications and reduced engraftment. Here we studied the hemocompatibility of commonly used human white adipose tissue (WAT), umbilical cord (UC) and bone marrow stromal cells (BMSC) and devised a possible strategy for safe and efficient stromal cell transplantation.Methods: Stromal cell identity, purity, and TF expression was tested by RTQ-PCR, flow cytometry and immunohistochemistry. Pro-coagulant activity and fibrin clot formation/stabilization was measured In Vitro by viscoelastic rotational plasma-thromboelastometry and in vivo by injecting sorted human stromal cells intravenously into rats. The impact of TF was verified in factor VII-deficient plasma and by sort-depleting TF/CD142+ BMSC.Results: We found significantly less TF expression by a subpopulation of BMSC corresponding to reduced pro-coagulant activity. UC and WAT stroma showed broad TF expression and durable clotting. Higher cell numbers significantly increased clot formation partially dependent on coagulation factor VII. Depleting the TF/CD142+ subpopulation significantly ameliorated BMSC's hemocompatibility without affecting immunomodulation. TF-deficient BMSC did not produce thromboembolism in vivo, comparing favorably to massive intravascular thrombosis induction by TF-expressing stromal cells.Conclusion: We demonstrate that plasma-based thromboelastometry provides a reliable tool to detect pro-coagulant activity of therapeutic cells. Selecting TF-deficient BMSC is a novel strategy for improving cell therapy applicability by reducing cell dose-dependent IBMIR risk. The particularly strong pro-coagulant activity of UC and WAT preparations sounds an additional note of caution regarding uncritical systemic application of stromal cells, particularly from non-hematopoietic extravascular sources.
Numerous cell-based therapeutics are currently being tested in clinical trials. Human platelet lysate (HPL) is a valuable alternative to fetal bovine serum as a cell culture medium supplement for a variety of different cell types. HPL as a raw material permits animal serum-free cell propagation with highly efficient stimulation of cell proliferation, enabling humanized manufacturing of cell therapeutics within a reasonable timeframe. Providers of HPL have to consider dedicated quality issues regarding identity, purity, potency, traceability and safety. Release criteria have to be defined, characterizing the suitability of HPL batches for the support of a specific cell culture. Fresh or expired platelet concentrates from healthy blood donors are the starting material for HPL preparation, according to regulatory requirements. Pooling of individual platelet lysate units into one HPL batch can balance donor variation with regard to essential platelet-derived growth factors and cytokines. The increasingly applied pathogen reduction technologies will further increase HPL safety. In this review article, aspects and regulatory requirements of whole blood donation and details of human platelet lysate manufacturing are presented. International guidelines for raw materials are discussed, and defined quality controls, as well as release criteria for safe and GMP-compliant HPL production, are summarized.
BackgroundBecause mitochondria play an essential role in energy metabolism, generation of reactive oxygen species (ROS), and apoptosis, sequence variation in the mitochondrial genome has been postulated to be a contributing factor to the etiology of multifactorial age-related diseases, including cancer. The aim of the present study was to compare the frequencies of mitochondrial DNA (mtDNA) haplogroups as well as control region (CR) polymorphisms of patients with malignant melanoma (n = 351) versus those of healthy controls (n = 1598) in Middle Europe.Methodology and Principal FindingsUsing primer extension analysis and DNA sequencing, we identified all nine major European mitochondrial haplogroups and known CR polymorphisms. The frequencies of the major mitochondrial haplogroups did not differ significantly between patients and control subjects, whereas the frequencies of the one another linked CR polymorphisms A16183C, T16189C, C16192T, C16270T and T195C were significantly higher in patients with melanoma compared to the controls. Regarding clinical characteristics of the patient cohort, none of the nine major European haplogroups was associated with either Breslow thickness or distant metastasis. The CR polymorphisms A302CC-insertion and T310C-insertion were significantly associated with mean Breslow thickness, whereas the CR polymorphism T16519C was associated with metastasis.Conclusions and SignificanceOur results suggest that mtDNA variations could be involved in melanoma etiology and pathogenesis, although the functional consequence of CR polymorphisms remains to be elucidated.
BackgroundInnovative human stromal cell therapeutics require xeno-free culture conditions. Various formulations of human platelet lysate (HPL) are efficient alternatives for fetal bovine serum (FBS). However, a consistent lack of standardized manufacturing protocols and quality criteria hampers comparability of HPL-products. Aim of this study was to compare the biochemical composition of three differential HPL-preparations with FBS and to investigate their impact on stromal cell biology.MethodsStromal cells were isolated from bone marrow (BM), white adipose tissue (WAT) and umbilical cord (UC) and cultured in medium supplemented with pooled HPL (pHPL), fibrinogen-depleted serum-converted pHPL (pHPLS), mechanically fibrinogen-depleted pHPL (mcpHPL) and FBS. Biochemical parameters were analyzed in comparison to standard values in whole blood. Distinct growth factors and cytokines were measured by bead-based multiplex technology. Flow cytometry of stromal cell immunophenotype, in vitro differentiation, and mRNA expression analysis of transcription factors SOX2, KLF4, cMYC, OCT4 and NANOG were performed.ResultsBiochemical parameters were comparable in all pHPL preparations, but to some extent different to FBS. Total protein, glucose, cholesterol and Na+ were elevated in pHPL preparations, K+ and Fe3+ levels were higher in FBS. Compared to FBS, pHPL-based media significantly enhanced stromal cell propagation. Characteristic immunophenotype and in vitro differentiation potential were maintained in all four culture conditions. The analysis of growth factors and cytokines revealed distinct levels depending on the pre-existence in pHPL, consumption or secretion by the stromal cells. Interestingly, mRNA expression of the transcription and mitotic bookmarking factors cMYC and KLF4 was significantly enhanced in a source dependent manner in stromal cells cultured in pHPL- compared to FBS-supplemented media. SOX2 mRNA expression of all stromal cell types was increased in all pHPL culture conditions.ConclusionAll pHPL-supplemented media equally supported proliferation of WAT- and UC-derived stromal cells significantly better than FBS. Mitotic bookmarking factors, known to enable a quick re-entry to the cell cycle, were significantly enhanced in pHPL-expanded cells. Our results support a better characterization and standardization of humanized culture media for stromal cell-based medicinal products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.