Synthetic assembly within living cells represents an innovative way to explore purely chemical tools that can direct and control cellular behavior. We use a simple and modular platform that is broadly accessible and yet incorporates highly intricate molecular recognition, immolative, and rearrangement chemistry. Short bimodular peptide sequences undergo a programmed sequence of events that can be tailored within the living intracellular environment. Each sequential stage of the pathways beginning with the cellular uptake, intracellular transport, and localization imposes distinct structural changes that result in the assembly of fibrillar architectures inside cells. The observation of apoptosis, which is characterized by the binding of Annexin V, demonstrates that programmed cell death can be promoted by the peptide assembly. Higher complexity of the assemblies was also achieved by coassembly of two different sequences, resulting in intrinsically fluorescent architectures. As such, we demonstrate that the in situ construction of architectures within cells will broaden the community’s perspective toward how structure formation can impact a living system.
The development of a synthetic code that enables a sequence programmable feature like DNA represents a key aspect toward intelligent molecular systems. We developed herein the well-known dynamic covalent interaction between boronic acids (BAs) and catechols (CAs) into synthetic nucleobase analogs. Along a defined peptide backbone, BA or CA residues are arranged to enable sequence recognition to their complementary strand. Dynamic strand displacement and errors were elucidated thermodynamically to show that sequences are able to specifically select their partners. Unlike DNA, the pH dependency of BA/CA binding enables the dehybridization of complementary strands at pH 5.0. In addition, we demonstrate the sequence recognition at the macromolecular level by conjugating the cytochrome c protein to a complementary polyethylene glycol chain in a site-directed fashion.
The reactivation of the innate immune system by toll-like receptor (TLR) agonists holds promise for anticancer immunotherapy. Severe side effects caused by unspecific and systemic activation of the immune system upon intravenous injection prevent the use of small-molecule TLR agonists for such purposes. However, a covalent attachment of small-molecule imidazoquinoline (IMDQ) TLR7/8 agonists to pH-degradable polymeric nanogels could be shown to drastically reduce the systemic inflammation but retain the activity to tumoral tissues and their draining lymph nodes. Here, we introduce the synthesis of poly(norbornene)-based, acid-degradable nanogels for the covalent ligation of IMDQs. While the intact nanogels trigger sufficient TLR7/8 receptor stimulation, their degraded version of soluble, IMDQ-conjugated poly(norbornene) chains hardly activates TLR7/8. This renders their clinical safety profile, as degradation products are obtained, which would not only circumvent nanoparticle accumulation in the body but also provide nonactive, polymer-bound IMDQ species. Their immunologically silent behavior guarantees both spatial and temporal control over immune activity and, thus, holds promise for improved clinical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.