The study presents a novel vancomycin-releasing collagen wound dressing derived from Cyprinus carpio collagen type I cross-linked with carbodiimide which retarded the degradation rate and increased the stability of the sponge. Following lyophilization, the dressings were subjected to gamma sterilization. The structure was evaluated via scanning electron microscopy images, micro-computed tomography, and infrared spectrometry. The structural stability and vancomycin release properties were evaluated in a phosphate buffer solution. Microbiological testing and a rat model of a wound infected with methicillin-resistant Staphylococcus aureus (MRSA) were then employed to test the efficacy of the treatment of the infected wound. Following an initial mass loss due to the release of vancomycin, the sponges remained stable. After 7 days of exposure in phosphate buffered saline (37°C), 60% of the material remained with a preserved collagen secondary structure together with a high degree of open porosity (over 80%). The analysis of the release of the vancomycin revealed the homogeneous distribution of the antibiotic both across and between the sponges. The release of vancomycin was retarded as proved by in vitro testing and further confirmed by the animal model from which measurable concentrations were observed in blood samples 24 hours after the subcutaneous implantation of the sponge, which was more than observed following i. p. administration. The sponge was also highly effective in terms of reducing the number of colony-forming units in biopsies extracted from the infected wounds 4 days following the inoculation of the wounds with the MRSA solution.
Our study presents a novel collagen wound dressing prepared from freshwater fish skin ( Cyprinus Carpio) collagen type I. Half of the sponges were cross-linked with carbodiimide. The cross-linked and non-cross-linked collagen sponges were subsequently impregnated with gentamicin and lyophilized thus allowing for the attainment of the appropriate gentamicin content without the removal thereof during the cross-linking stage. The structure was evaluated via micro-CT and infrared spectrometry and the structural stability and gentamicin release properties were evaluated in phosphate buffer solution. The sponges were further tested via a rat model of an infected wound with Pseudomonas aeruginosa inoculation and compared with a reference commercial product. The sponges thus prepared provided a degree of open porosity that was comparable to or higher than that of the reference commercial product. Spectrometry analysis revealed that the cross-linked collagen sponge and reference commercial product sponge preserved their secondary collagen structure after 168 h while early accelerated degradation was observed with respect to the non-cross-linked collagen sponge. Gentamicin was released rapidly from all the sponges. Compared to those animals with gentamicin-containing sponges or gentamicin administered intramuscularly, the animals with the cross-linked collagen sponge without gentamicin exhibited marked clinical and laboratory infection signs. Both the administration routes (intramuscular and via gentamicin-containing sponges) provided similar gentamicin plasma levels. The resulting highly homogeneous product which was characterized by excellent structural and clinical properties proved effective in terms of the treatment of a surgical wound infection in a rat model. We demonstrated that all the gentamicin was released from the sponge and was absorbed in the systemic circulation. This is the first time that Cyprinus Carpio collagen has been used in the preparation of wound dressings. Thus, gentamicin-containing sponges provide a promising tool for the treatment and prevention of surgical site infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.