Quercetin, one of the most abundant polyphenols in the plant kingdom has been shown to be photodegraded on exposure to UV light. Despite the fact, it is a component of several dermatological preparations. Its phototoxic potential has not been evaluated to date. The aim of this study was to assess whether photo-induced degradation of quercetin is linked to phototoxic effects on living cells. Its dihydro derivative, taxifolin, was included in the study. For evaluation, the 3T3 Neutral Red Uptake Phototoxicity Test according to OECD TG 432 was used. To better approximate human skin, HaCaT keratinocytes, normal human epidermal keratinocytes and dermal fibroblasts were used, apart from the Balb/c 3T3 cell line. Quercetin showed a dose-dependent photodegradation in aqueous and organic environments and a phototoxic effect on all used cells. Quercetin pretreatment and following UVA exposure resulted in increased reactive oxygen species production and intracellular glutathione level depletion in human dermal fibroblasts. Taxifolin was found completely nonphototoxic and photostable. As only in vitro methodology was used, further studies using 3D skin models and/or human volunteers are needed to confirm whether exposure to sunlight, tanning sunbeds and/or phototherapy in people using cosmetics containing quercetin is a health risk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.