Wildfires have major ecological, social and economic consequences. Information about the extent of burned areas is essential to assess these consequences and can be derived from remote sensing data. Over the last years, several methods have been developed to segment burned areas with satellite imagery. However, these methods mostly require extensive preprocessing, while deep learning techniques—which have successfully been applied to other segmentation tasks—have yet to be fully explored. In this work, we combine sensor-specific and methodological developments from the past few years and suggest an automatic processing chain, based on deep learning, for burned area segmentation using mono-temporal Sentinel-2 imagery. In particular, we created a new training and validation dataset, which is used to train a convolutional neural network based on a U-Net architecture. We performed several tests on the input data and reached optimal network performance using the spectral bands of the visual, near infrared and shortwave infrared domains. The final segmentation model achieved an overall accuracy of 0.98 and a kappa coefficient of 0.94.
Flood duration is a crucial parameter for disaster impact assessment as it can directly influence the degree of economic losses and damage to structures. It also provides an indication of the spatio-temporal persistence and the evolution of inundation events. Thus, it helps gain a better understanding of hydrological conditions and surface water availability and provides valuable insights for land-use planning. The objective of this work is to develop an automatic procedure to estimate flood duration and the uncertainty associated with the use of multi-temporal flood extent masks upon which the procedure is based. To ensure sufficiently high observation frequencies, data from multiple satellites, namely Sentinel-1, Sentinel-2, Landsat-8 and TerraSAR-X, are analyzed. Satellite image processing and analysis is carried out in near real-time with an integrated system of dedicated processing chains for the delineation of flood extents from the range of aforementioned sensors. The skill of the proposed method to support satellite-based emergency mapping activities is demonstrated on two cases, namely the 2019 flood in Sofala, Mozambique and the 2017 flood in Bihar, India.
In order to support disaster management activities related to flood situations, an automatic system for near-real time mapping of flood extent and duration using multi-sensor satellite data is developed. The system is based on four processing chains for the automatic derivation of the inundation extent from Sentinel-1 and TerraSAR-X radar as well as from optical Sentinel-2 and Landsat data. While the systematic acquisition plan of the Sentinel-1/2 and Landsat satellites allows a continuous monitoring of inundated areas at an interval of a few days, the TerraSAR-X processing chain has to be triggered on-demand over the disasteraffected areas. Beyond flood extent masks, flood duration products are generated to indicate the temporal stability and evolution of flood events. The flood monitoring system is demonstrated on a severe flood situation in Mozambique related to cyclone Idai in 2019.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.