BackgroundAlcohol consumption causes an estimated 4% of the global disease burden, prompting goverments to impose regulations to mitigate the adverse effects of alcohol. To assist public health leaders and policymakers, the authors developed a composite indicator—the Alcohol Policy Index—to gauge the strength of a country's alcohol control policies.Methods and FindingsThe Index generates a score based on policies from five regulatory domains—physical availability of alcohol, drinking context, alcohol prices, alcohol advertising, and operation of motor vehicles. The Index was applied to the 30 countries that compose the Organization for Economic Cooperation and Development and regression analysis was used to examine the relationship between policy score and per capita alcohol consumption. Countries attained a median score of 42.4 of a possible 100 points, ranging from 14.5 (Luxembourg) to 67.3 (Norway). The analysis revealed a strong negative correlation between score and consumption (r = −0.57; p = 0.001): a 10-point increase in the score was associated with a one-liter decrease in absolute alcohol consumption per person per year (95% confidence interval, 0.4–1.5 l). A sensitivity analysis demonstrated the robustness of the Index by showing that countries' scores and ranks remained relatively stable in response to variations in methodological assumptions.ConclusionsThe strength of alcohol control policies, as estimated by the Alcohol Policy Index, varied widely among 30 countries located in Europe, Asia, North America, and Australia. The study revealed a clear inverse relationship between policy strength and alcohol consumption. The Index provides a straightforward tool for facilitating international comparisons. In addition, it can help policymakers review and strengthen existing regulations aimed at minimizing alcohol-related harm and estimate the likely impact of policy changes.
Summary. Composite indicators aggregate a set of variables by using weights which are understood to reflect the variables’ importance in the index. We propose to measure the importance of a given variable within existing composite indicators via Karl Pearson's ‘correlation ratio’; we call this measure the ‘main effect’. Because socio‐economic variables are heteroscedastic and correlated, relative nominal weights are hardly ever found to match relative main effects; we propose to summarize their discrepancy with a divergence measure. We discuss to what extent the mapping from nominal weights to main effects can be inverted. This analysis is applied to six composite indicators, including the human development index and two popular league tables of university performance. It is found that in many cases the declared importance of single indicators and their main effect are very different, and that the data correlation structure often prevents developers from obtaining the stated importance, even when modifying the nominal weights in the set of non‐negative numbers with unit sum.
HighlightsComposite indicators are widely used in sustainable development and elsewhere.The effect of weights used in aggregating indicators is complex.Three tools are presented which help developers and users to investigate effects of weights.Case studies related to sustainable development demonstrate the benefits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.