We present a method to identify and characterize interactions between a fluorophore-labeled protein ('prey') and a membrane protein ('bait') in live mammalian cells. Cells are plated on micropatterned surfaces functionalized with antibodies to the bait extracellular domain. Bait-prey interactions are assayed through the redistribution of the fluorescent prey. We used the method to characterize the interaction between human CD4, the major co-receptor in T-cell activation, and human Lck, the protein tyrosine kinase essential for early T-cell signaling. We measured equilibrium associations by quantifying Lck redistribution to CD4 micropatterns and studied interaction dynamics by photobleaching experiments and single-molecule imaging. In addition to the known zinc clasp structure, the Lck membrane anchor in particular had a major impact on the Lck-CD4 interaction, mediating direct binding and further stabilizing the interaction of other Lck domains. In total, membrane anchorage increased the interaction lifetime by two orders of magnitude.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.