Zearalenone (ZEN)-degrading enzymes are a promising strategy to counteract the negative effects of this mycotoxin in livestock. The reaction products of such enzymes need to be thoroughly characterized before technological application as a feed additive can be envisaged. Here, we evaluated the estrogenic activity of the metabolites hydrolyzed zearalenone (HZEN) and decarboxylated hydrolyzed zearalenone (DHZEN) formed by hydrolysis of ZEN by the zearalenone-lactonase Zhd101p. ZEN, HZEN, and DHZEN were tested in two in vitro models, the MCF-7 cell proliferation assay (0.01–500 nM) and an estrogen-sensitive yeast bioassay (1–10,000 nM). In addition, we compared the impact of dietary ZEN (4.58 mg/kg) and equimolar dietary concentrations of HZEN and DHZEN on reproductive tract morphology as well as uterine mRNA and microRNA expression in female piglets (n = 6, four weeks exposure). While ZEN increased cell proliferation and reporter gene transcription, neither HZEN nor DHZEN elicited an estrogenic response, suggesting that these metabolites are at least 50–10,000 times less estrogenic than ZEN in vitro. In piglets, HZEN and DHZEN did not increase vulva size or uterus weight. Moreover, RNA transcripts altered upon ZEN treatment (EBAG9, miR-135a-5p, miR-187-3p and miR-204-5p) were unaffected by HZEN and DHZEN. Our study shows that both metabolites exhibit markedly reduced estrogenicity in vitro and in vivo, and thus provides an important basis for further evaluation of ZEN-degrading enzymes.
The mycotoxin zearalenone (ZEN) poses a risk to animal health because of its estrogenic effects. Diagnosis of ZEN-induced disorders remains challenging due to the lack of appropriate biomarkers. In this regard, circulating microRNAs (small non-coding RNAs) have remarkable potential, as they can serve as indicators for pathological processes in tissue. Thus, we combined untargeted and targeted transcriptomics approaches to investigate the effects of ZEN on the microRNA expression in porcine uterus, jejunum and serum, respectively. To this end, twenty-four piglets received uncontaminated feed (Control) or feed containing 0.17 mg/kg ZEN (ZEN low), 1.46 mg/kg ZEN (ZEN medium) and 4.58 mg/kg ZEN (ZEN high). After 28 days, the microRNA expression in the jejunum remained unaffected, while significant changes in the uterine microRNA profile were observed. Importantly, 14 microRNAs were commonly and dose-dependently affected in both the ZEN medium and ZEN high group, including microRNAs from the miR-503 cluster (i.e. ssc-miR-424-5p, ssc-miR-450a, ssc-miR-450b-5p, ssc-miR-450c-5p, ssc-miR-503 and ssc-miR-542-3p). Predicted target genes for those microRNAs are associated with regulation of gene expression and signal transduction (e.g. cell cycle). Although the effects in serum were less pronounced, receiver operating characteristic analysis revealed that several microRNA ratios were able to discriminate properly between non-exposed and ZEN-exposed pigs (e.g. ssc-miR-135a-5p/ssc-miR-432-5p, ssc-miR-542-3p/ssc-miR-493-3p). This work sheds new light on the molecular mechanisms of ZEN, and fosters biomarker discovery.
Previous research identified several microorganisms and pathways capable of degrading the mycotoxin fumonisin B₁ (FB₁). Degradation of FB₁ by microorganisms seems to comprise two essential steps: hydrolysis to hydrolyzed fumonisin B₁ (HFB₁) and deamination of the hydrolysis product. One of the previously studied microorganisms was the Gram negative bacterium ATCC 55552. The gene corresponding to the first step of FB₁ degradation in this bacterium was identified, but the genetic basis for deamination of the hydrolyzed intermediate remained unexplained (Duvick et al. 2000, PCT patent application WO200004158). Here we report the sequence and HFB₁-deaminating activity of a novel aminotransferase encoded by the bacterium ATCC 55552. The corresponding gene was identified, sequenced, and over-expressed in Escherichia coli. Cell lysates of the recombinant E. coli strain showed distinct HFB₁-deaminating activity in the presence of pyridoxal phosphate and pyruvate, as was demonstrated by liquid chromatography-mass spectrometry. Thus, we suggest the novel enzyme to be part of the fumonisin catabolic pathway of the bacterium ATCC 55552.
BackgroundErgopeptines are a predominant class of ergot alkaloids produced by tall fescue grass endophyte Neotyphodium coenophialum or cereal pathogen Claviceps purpurea. The vasoconstrictive activity of ergopeptines makes them toxic for mammals, and they can be a problem in animal husbandry.ResultsWe isolated an ergopeptine degrading bacterial strain, MTHt3, and classified it, based on its 16S rDNA sequence, as a strain of Rhodococcus erythropolis (Nocardiaceae, Actinobacteria). For strain isolation, mixed microbial cultures were obtained from artificially ergot alkaloid-enriched soil, and provided with the ergopeptine ergotamine in mineral medium for enrichment. Individual colonies derived from such mixed cultures were screened for ergotamine degradation by high performance liquid chromatography and fluorescence detection. R. erythropolis MTHt3 converted ergotamine to ergine (lysergic acid amide) and further to lysergic acid, which accumulated as an end product. No other tested R. erythropolis strain degraded ergotamine. R. erythropolis MTHt3 degraded all ergopeptines found in an ergot extract, namely ergotamine, ergovaline, ergocristine, ergocryptine, ergocornine, and ergosine, but the simpler lysergic acid derivatives agroclavine, chanoclavine, and ergometrine were not degraded. Temperature and pH dependence of ergotamine and ergine bioconversion activity was different for the two reactions.ConclusionsDegradation of ergopeptines to ergine is a previously unknown microbial reaction. The reaction end product, lysergic acid, has no or much lower vasoconstrictive activity than ergopeptines. If the genes encoding enzymes for ergopeptine catabolism can be cloned and expressed in recombinant hosts, application of ergopeptine and ergine degrading enzymes for reduction of toxicity of ergot alkaloid-contaminated animal feed may be feasible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.