Even though pre-attentive cognition (MMN) was not affected, processing at the early perceptual level (N100) and in higher-order cognition (P300) was significantly disrupted by psilocybin. Our results have implications for the role of 5-HT receptors in altered information processing in psychosis and schizophrenia.
Difficulty with emotion perception is a core feature of autism spectrum disorder (ASD) that is also associated with the broader autism phenotype. The current study explored the neural underpinnings of conscious and nonconscious perceptions of affect in typically developing individuals with varying levels of autistic-like traits, as measured by the Autism Quotient (AQ). We investigated the relationship between autistic traits and face processing efficiency using event-related potentials (ERPs). In 20 typically developing adults, we utilized ERPs (the P100, N170, and P300) to measure differences in face processing for emotional faces that were presented either (a) too quickly to reach conscious awareness (16 ms) or (b) slowly enough to be consciously observed (200 ms). All individuals evidenced increased P100 and P300 amplitude and shorter N170 latencies for nonconscious versus consciously presented faces. Individuals with high AQ scores evidenced delayed ERP components. Nonconsciously perceived emotional faces elicited enhanced neural responses regardless of AQ score. Higher levels of autistic traits were associated with inefficient face perception (i.e., longer latency of ERP components). This delay parallels processing delays observed in ASD. These data suggest that inefficient social perception is present in individuals with subclinical levels of social impairment.
Serotonergic agonist psilocybin is a psychedelic with antidepressant potential. Sleep may interact with psilocybin’s antidepressant properties like other antidepressant drugs via induction of neuroplasticity. The main aim of the study was to evaluate the effect of psilocybin on sleep architecture on the night after psilocybin administration. Regarding the potential antidepressant properties, we hypothesized that psilocybin, similar to other classical antidepressants, would reduce rapid eye movement (REM) sleep and prolong REM sleep latency. Moreover, we also hypothesized that psilocybin would promote slow-wave activity (SWA) expression in the first sleep cycle, a marker of sleep-related neuroplasticity. Twenty healthy volunteers (10 women, age 28–53) underwent two drug administration sessions, psilocybin or placebo, in a randomized, double-blinded design. Changes in sleep macrostructure, SWA during the first sleep cycle, whole night EEG spectral power across frequencies in non-rapid eye movement (NREM) and REM sleep, and changes in subjective sleep measures were analyzed. The results revealed prolonged REM sleep latency after psilocybin administration and a trend toward a decrease in overall REM sleep duration. No changes in NREM sleep were observed. Psilocybin did not affect EEG power spectra in NREM or REM sleep when examined across the whole night. However, psilocybin suppressed SWA in the first sleep cycle. No evidence was found for sleep-related neuroplasticity, however, a different dosage, timing, effect on homeostatic regulation of sleep, or other mechanisms related to antidepressant effects may play a role. Overall, this study suggests that potential antidepressant properties of psilocybin might be related to changes in sleep.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.