Global biodiversity is increasingly threatened by land‐use change, but the direct and indirect drivers of species diversity in human‐modified tropical landscapes are poorly known. Forest‐dependent species are expected to be particularly sensitive to changes in landscape composition (e.g., forest loss) and configuration (e.g., increase of forest edges), both directly and indirectly through cascading landscape effects on local patterns of forest structure and resource availability. In contrast, non‐forest‐dependent species are probably more strongly related to landscape changes than to local forest patterns, as these species are able to use resources not only from the forest, but also from other landscape elements over larger spatial scales. We tested these hypotheses using structural equation modeling. In particular, we sampled 20 landscapes (115 ha each) from the Brazilian Atlantic rainforest to assess the effect of landscape‐scale forest cover and amount of forest edges on the diversity of frugivorous birds, both directly and indirectly through the effect that these landscape variables may have on vegetation complexity and fruit biomass. We separately assessed the response of forest‐dependent and non‐forest‐dependent frugivores to infer potential mechanisms underlying bird assemblages in fragmented landscapes. The diversity of forest‐dependent birds mainly decreased with the simplification of vegetation complexity in more deforested landscapes, but increased with increasing fruit biomass in more forested landscapes (indirect effects). Both patterns were significant, thus supporting a strong bottom‐up control, i.e., local habitat simplification and resource scarcity in highly deforested landscapes limits the maintenance of forest‐dependent birds. Conversely, but as expected, non‐forest‐dependent birds were more strongly and directly related to landscape‐scale patterns. In particular, landscapes with higher forest edge amount showed higher bird species diversity, probably because the increasing length of ecotones and interspersion/juxtaposition of different habitat types in landscapes with more forest edges can increase resource availability and foraging efficiency of non‐forest‐dependent birds. As the seed dispersal services offered by forest‐dependent species cannot be ecologically compensated for by the proliferation of non‐forest‐dependent species, preventing forest loss is imperative to maintain forest‐dependent birds and forest regeneration in this vanishing biodiversity hotspot.
Habitat loss is the main driver of the current high rate of species extinction, particularly in tropical forests. Understanding the factors associated with biodiversity loss, such as the extinction of species interactions and ecological functions, is an urgent priority. Here, our aim was to evaluate how landscape‐scale forest cover influences fruit biomass comparing different tree functional groups. We sampled 20 forest fragments located within landscapes with forest cover ranging from 2 to 93 percent in the Atlantic forest of southern Bahia, Brazil. In each fragment, we established five plots of 25 × 4 m and carried out phenological observations on fleshy fruit throughout 1 year on all trees ≥5 cm dbh. We estimated fruit availability by direct counting of all fruits and derived fruit biomass from this count. We used spatial mixed linear models to evaluate the effects of forest cover on species richness, abundance, and fruit biomass. Our results indicated that forest cover was the main explanatory variable and negatively influenced the total richness and abundance of zoochoric and shade‐tolerant but not shade‐intolerant species. A linear model best explained variations in richness and abundance of total and shade‐tolerant species. We also found that forest cover was positively correlated with the fruit biomass produced by all species and by the shade‐tolerant assemblages, with linear models best explaining both relationships. The loss of shade‐tolerant species and the lower fruit production in fragments with lower landscape‐scale forest cover may have implications for the maintenance of frugivore, seed dispersal service, and plant recruitment.
As tropical rainforests are cleared, forest remnants are increasingly isolated within agricultural landscapes. Understanding how forest loss impacts on species diversity can, therefore, contribute to identifying the minimum amount of habitat required for biodiversity maintenance in human-modified landscapes. Here, we evaluate how the amount of forest cover, at the landscape scale, affects patterns of species richness, abundance, key functional traits and common taxonomic families of adult trees in twenty Brazilian Atlantic rainforest landscapes. We found that as forest cover decreases, both tree community richness and abundance decline, without exhibiting a threshold. At the family-level, species richness and abundance of the Myrtaceae and Sapotaceae were also negatively impacted by the percent forest remaining at the landscape scale. For functional traits, we found a reduction in shade-tolerant, animal-dispersed and small-seeded species following a decrease in the amount of forest retained in landscapes. These results suggest that the amount of forest in a landscape is driving non-random losses in phylogenetic and functional tree diversity in Brazil’s remaining Atlantic rainforests. Our study highlights potential restraints on the conservation value of Atlantic rainforest remnants in deforested landscapes in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.