Hybrid Renewable Energy Systems (HRES) are an attractive solution for the supply of electricity in remote areas like islands and communities where grid extension is difficult. Hybrid systems combine renewable energy sources with conventional units and battery storage in order to provide energy in an off-grid or on-grid system. The purpose of this study is to examine the techno-economical feasibility and viability of a hybrid system in Donoussa island, Greece, in different scenarios. A techno-economic analysis was conducted for a hybrid renewable energy system in three scenarios with different percentages of adoption rate (20%, 50% and 100%)and with different system configurations. Using HOMER Pro software the optimal system configuration between the feasible configurations of each scenario was selected, based on lowest Net Present Cost (NPC), minimum Excess Electricity percentage, and Levelized Cost of Energy (LCoE). The results obtained by the simulation could offer some operational references for a practical hybrid system in Donoussa island. The simulation results confirm the application of a hybrid system with 0% of Excess Electricity, reasonable NPC and LCoE and a decent amount of renewable integration.
Load forecasting is a procedure of fundamental importance in power systems operation and planning. Many entities can benefit from accurate load forecasting such as generation companies, systems operators, retailers, prosumers, and others. A variety of models have been proposed so far in the literature. Among them, artificial neural networks are a favorable approach mainly due to their potential for capturing the relationship between load and other parameters. The forecasting performance highly depends on the number and types of inputs. The present paper presents a particle swarm optimization (PSO) two-step method for increasing the performance of short-term load forecasting (STLF). During the first step, PSO is applied to derive the optimal types of inputs for a neural network. Next, PSO is applied again so that the available training data is split into homogeneous clusters. For each cluster, a different neural network is utilized. Experimental results verify the robustness of the proposed approach in a bus load forecasting problem. Also, the proposed algorithm is checked on a load profiling problem where it outperforms the most common algorithms of the load profiling-related literature. During input selection, the weights update is held in asymmetrical duration. The weights of the training phase require more time compared with the test phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.