Sports are yielding a wealth of benefits for cardiovascular fitness, for psychological resilience, and for cognition. The amount of practice, and the type of practiced sports, are of importance to obtain these benefits and avoid any side effects. This is especially important in the context of contact sports. Contact sports are not only known to be a major source of injuries of the musculoskeletal apparatus, they are also significantly related to concussion and sub-concussion. Sub-concussive head impacts accumulate throughout the active sports career, and thus can cause measurable deficits and changes to brain health. Emerging research in the area of cumulative sub-concussions in contact sports has revealed several associated markers of brain injury. For example, recent studies discovered that repeated headers in soccer not only cause measurable signs of cognitive impairment but are also related to a prolonged cortical silent period in transcranial magnetic stimulation measurements. Other cognitive and neuroimaging biomarkers are also pointing to adverse effects of heading. A range of fluid biomarkers completes the picture of cumulating effects of sub-concussive impacts. Those accumulating effects can cause significant cognitive impairment later in life of active contact sportswomen and men. The aim of this review is to highlight the current scientific evidence on the effects of repeated sub-concussive head impacts on contact sports athletes’ brains, identify the areas in need of further investigation, highlight the potential of advanced neuroscientific methods, and comment on the steps governing bodies have made to address this issue. We conclude that there are indeed neural and biofluid markers that can help better understand the effects of repeated sub-concussive head impacts and that some aspects of contact sports should be redefined, especially in situations where sub-concussive impacts and concussions can be minimized.
IntroductionSport-related repetitive subconcussive head impacts (RSHIs) are increasingly thought to be associated with adverse long-term outcomes. However, owing to potentially subtle effects, accurate assessment of harm to the brain as a consequence of RSHI is a major challenge and an unmet need. Several studies suggest that biofluid markers can be valuable objective tools to aid the diagnosis and injury characterisation and help in medical decision-making. Still, by and large, the results have been limited, heterogeneous and inconsistent. The main aims of this scoping review are therefore (1) to systematically examine the extent, nature and quality of available evidence from studies investigating effects of RSHI on fluid biomarkers and (2) to formulate guidelines and identify gaps with the aim to inform future clinical studies and the development of research priorities.Methods and analysesWe will use a comprehensive search strategy to retrieve all available and relevant articles in the literature. The following electronic databases will be systematically searched: MEDLINE (EBSCO host; from 1809 to 2020); Scopus (from 1788 to 2020); SPORTDiscus (from 1892 to 2020); CINAHL Complete (from 1937 to 2020); PsycINFO (from 1887 to 2020); Cochrane Library (to 2020); OpenGrey (to 2020); ClinicalTrials.gov (to 2020) and WHO International Clinical Trials Registry Platform (to 2020). We will consider primarily biomedical studies evaluating the biofluid markers following RSHI. Two independent reviewers will screen articles for inclusion using predefined eligibility criteria and extract data of retained articles. Disagreements will be resolved through consensus or arbitrated by a third reviewer if necessary. Data will be reported qualitatively given the heterogeneity of the included studies. In synthesising the evidence, we will structure results by markers, sample types, outcomes, sport and timepoints.Ethics and disseminationEthics approval is not required. We will submit results for peer-review publication, and present at relevant conferences.
Objectives: The objective of this study was to assess if injury-related alterations in the Sport Concussion Assessment Tool-5 (SCAT5) are matched by changes in transcranial magnetic stimulation-derived intracortical inhibition. We hypothesised that neurophysiological measures would take longer to return to normal than recovery assessed by the SCAT5 following sport related concussion (SRC).Methods: Thirteen male contact sport athletes (20.5 ± 4.5 years), who reported a concussion were recruited from local Rugby and American football clubs. Participants were tested at 4 timepoints throughout the concussion recovery period: within 24 h of concussion (day 0), and at 7, 9, and 11 days after concussion. All participants completed the SCAT5 and underwent TMS to assess cortical silent period duration (CSp), a measure of intracortical inhibition.Results: After concussion CSp significantly declined from day 0 (122 ± 28 ms) to day 11 (106 ± 15 ms) [F(3, 33) = 7.80, p < 0.001]. SCAT5 measures of symptom number and severity were significantly decreased [symptom number: χ(3)2 = 30.44, p < 0.01; symptom severity: χ(3)2 = 25.75, p < 0.001] between the day 0 timepoint and each of the other timepoints. SCAT5 balance errors (mBESS) decreased significantly [F(3, 33) = 19.55, p < 0.001] between the day 0 timepoint and each of the other timepoints. CSp and SCAT5 recovery patterns were different. SCAT5 domains recovered faster showing no further significant changes after day 7, whilst CSp was still decreasing between days 7 and 9. Due to the small sample size we also used a Bayesian linear model to investigate the recovery of CSp and mBESS. The posterior distribution of our Bayesian model provided evidence that CSp decreased at day 7 and it continued to decrease at day 9, unlike mBESS which decreased at day 7 and then reached a plateau.Conclusion: There are clinically important discrepancies between clinical and neurophysiological measures of concussion recovery. This finding has important implications for return to play (RTP) protocols and the prevention of complications after sport concussion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.