In this paper, fly ash, ladle furnace slag and limestone filler were utilized in concrete used as material for additive manufacturing (3D printing). Fly ash and ladle furnace slag were used as a replacement of cement (30% wt.) and limestone filler as a replacement of siliceous aggregates (50% wt.). Workability of fresh concretes that contained these by-products was measured 0, 15 and 30 minutes after mixing. Three different workability tests were conducted and compared: flow table, ICAR rheometer and an experimental method that measures the electric power consumption of the motor that rotates the screw extruder. Workability parameters that were measured were evaluated regarding printability of mixtures. Density, ultrasonic pulse velocity, compressive and flexural strength were measured on hardened concrete. Additionally, relative likelihood of cracking of different concrete mixtures was estimated by performing restrained shrinkage test (ASTM C1581). Results showed that use of fly ash or ladle furnace slag as binder, and limestone filler as aggregate decreases slightly the mechanical properties of concrete but improve its durability regarding cracking potential. Monitoring of electric power consumption of screw extruder motor was found to be an effective method for measuring easily real-time workability and define if a mixture is printable or not.
The waste produced from ready-mixed concrete (RMC) industries poses an environmental challenge regarding recycling. Three different waste products form RMC plants were investigated for use as recycled aggregates in construction applications. Crushed hardened concrete from test specimens of at least 40 MPa compressive strength (HR) and crushed hardened concrete from returned concrete (CR) were tested for their suitability as concrete aggregates and then used as fine and coarse aggregate in new concrete mixtures. In addition, cement sludge fines (CSF) originating from the washing of concrete trucks were tested for their properties as filler for construction applications. Then, CSF was used at 10% and 20% replacement rates as a cement replacement for mortar production and as an additive for soil stabilization. The results show that, although there is some reduction in the properties of the resulting concrete, both HR and CR can be considered good-quality recycled aggregates, especially when the coarse fraction is used. Furthermore, HR performs considerably better than CR both as coarse and as fine aggregate. CSF seems to be a fine material with good properties as a filler, provided that it is properly crushed and sieved through a 75 μm sieve.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.