Abstract. This paper deals with a theoretical and a numerical analysis of tapered beam-columns subjected to a bending moment and an axial force. A standard FEM code COSMOS/M has been used for a numerical estimation of a critical load multiplier. It has been assumed that the critical force of an axially loaded tapered column could be calculated in an analogous way as for uniform member just with an additional correction factor n . Similarly, a critical bending moment of the tapered column subjected to a pure bending could be determined by using a correction factor m . A large number of simulations carried out within a wide range of the ratios of second moments of area allowed to determine the proper values of theses two factors. For practical engineers, solution of such kind of problems can be easier when an equivalent cross-sectional height tr h is used.
Traditional raft design methods describe unpiled and fully piled rafts. The current paper aims to discuss intermediate raft design variants when the raft is at the same time partially supported by piles and partially rests on the ground. The loading conditions of all variants as well as mechanical properties assumed to be identical, general numerical simulation assumptions are also the same. The task is to analyse the stress and strain state of the raft for all variants (unpiled raft, partially piled raft, fully piled raft), to compare the results and to determine the most rational case. Raft settlements, bending moments and expenses of the materials are compared on the basis of the results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.