Systems far from equilibrium respond to probes in a history-dependent manner. The prediction of the system response depends on either knowing the details of that history or being able to characterize all the current system properties. In crystal plasticity, various processing routes contribute to a history dependence that may manifest itself through complex microstructural deformation features with large strain gradients. However, the complete spatial strain correlations may provide further predictive information. In this paper, we demonstrate an explicit example where spatial strain correlations can be used in a statistical manner to infer and classify prior deformation history at various strain levels. The statistical inference is provided by machine-learning (ML) techniques. As source data, we consider uniaxially compressed crystalline thin films generated by two dimensional discrete dislocation plasticity simulations, after prior compression at various levels. Crystalline thin films at the nanoscale demonstrate yield-strength size effects with very noisy mechanical responses that produce a serious challenge to learning techniques. We discuss the influence of size effects and structural uncertainty to the ability of our approach to distinguish different plasticity regimes.
Deformation Correlations and Machine Learning: Microstructural inference and crystal plasticity predictions Michail Tzimas The present thesis makes a connection between spatially resolved strain correlations and material processing history. Such correlations can be used to infer and classify prior deformation history of a sample at various strain levels with the use of Machine Learning approaches. A simple and concrete example of uniaxially compressed crystalline thin films of various sizes, generated by two-dimensional discrete dislocation plasticity simulations is examined. At the nanoscale, thin films exhibit yield-strength size effects with noisy mechanical responses which create an interesting challenge for the application of Machine Learning techniques. Moreover, this thesis demonstrates the prediction of the average mechanical responses of thin films based on the classified prior deformation history and discusses the possible ramifications for modelling crystal plasticity behavior in extreme settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.