Application of topological properties and graph theory to benzenoid hydrocarbons allowed us to construct an effective approach interpreting ring current formation in molecules when exposed to an external magnetic field. Transformation of unexcited canonical structures for molecules of 34 benzenoid hydrocarbons into circuit structures and then to directed circuit structures allowed us to define global magnetic characteristics (GMC). GMC/n(2) values correlate very well with exaltation of magnetic susceptibility DeltaLambda/n(2) (computed at the CSGT/B3LYP/6-311G** level of theory by using optimized geometries at the B3LYP/6-311G** DFT level) with cc = 0.993. If the approach is applied to individual rings, then the correlation between local magnetic characteristics (LMC) for 129 various rings of 34 benzenoid hydrocarbons and NICS(1) works with cc = -0.975.
We have obtained three-component systems: the complexes comprising of two different benzenoid hydrocarbons together with one molecule of 7,7,8,8-tetracyanoquinodimethane (TCNQ). The X-ray single-crystal structures of naphthalene-perylene-TCNQ and pyrene-perylene-TCNQ revealed that they form face-to-face stacking between perylene and TCNQ molecules containing another hydrocarbon as a guest in the structure. We also present a pyrene-TCNQ complex with two pyrene moieties acting in similar way. In this system, charge transfer is far more efficient than in any other complexes of TCNQ with benzenoid hydrocarbons. Additionally, we have also obtained as references pyrene-TCNQ, chrysene-TCNQ, phenanthrene-TCNQ and naphthalene-TCNQ with 1 : 1 molecular ratios. These systems were also used to estimate the degrees of charge transfer.
The geometries of a series of [n](2,7)pyrenophanes (n = 6-12) were optimized at the B3LYP/6-311G** DFT level. The X-ray crystal structures determined for the [9](2,7)- and [10](2,7)pyrenophanes agreed excellently with the computed structures. The degree of nonplanarity of the pyrene moiety depends on the number of CH2 groups in the aliphatic bridge and, as analyzed theoretically, influences the strain energy and the extent of pi-electron delocalization in the pyrene fragment. Various indices, e.g., the relative aromatic stabilization energies (DeltaASE), magnetic susceptibility exaltations (Lambda), nucleus-independent chemical shifts (NICS), and the harmonic oscillator model of aromaticity (HOMA) were used to quantify the change in aromatic character of the pyrene fragment. DeltaASE and relative Lambda values (with respect to planar pyrene) were evaluated by homodesmotic equations comparing the bent pyrene unit with its bent quinoid dimethylene-substituted analog. The bend angle, alpha, DeltaASE, and Lambda were linearly related. The aromaticity decreases smoothly and regularly over a wide range of bending, but the magnitude of the change is not large. The differences between planar pyrene (alpha = 0 degrees) and the most distorted pyrene unit (alpha = 39.7 degrees in [6](2,7)pyrenophane) are only 15.8 kcal/mol (DeltaASE) and 18.8 cgs-ppm (Lambda). Also, the geometry-based HOMA descriptor changes by only 0.07 unit. The local NICS descriptors of aromatic character also correlate very well with the global indices of aromaticity. In line with the known reactivity of pyrenophanes, the variations of NICS(1), a measure of pi-electron delocalization, were largest for the outer, biphenyl-type rings. The strain energies of the pyrene fragments were much larger and varied more than those evaluated for the bridge. Both strain energies were interrelated (correlation coefficient R = 0.979) and depend on the bend angle, alpha.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.