The efficient multi-modal fusion of data streams from different sensors is a crucial ability that a robotic perception system should exhibit to ensure robustness against disturbances. However, as the volume and dimensionality of sensory-feedback increase it might be difficult to manually design a multimodal-data fusion system that can handle heterogeneous data. Nowadays, multi-modal machine learning is an emerging field with research focused mainly on analyzing vision and audio information. Although, from the robotics perspective, haptic sensations experienced from interaction with an environment are essential to successfully execute useful tasks. In our work, we compared four learning-based multi-modal fusion methods on three publicly available datasets containing haptic signals, images, and robots’ poses. During tests, we considered three tasks involving such data, namely grasp outcome classification, texture recognition, and—most challenging—multi-label classification of haptic adjectives based on haptic and visual data. Conducted experiments were focused not only on the verification of the performance of each method but mainly on their robustness against data degradation. We focused on this aspect of multi-modal fusion, as it was rarely considered in the research papers, and such degradation of sensory feedback might occur during robot interaction with its environment. Additionally, we verified the usefulness of data augmentation to increase the robustness of the aforementioned data fusion methods.
Soft grippers are gaining significant attention in the manipulation of elastic objects, where it is required to handle soft and unstructured objects, which are vulnerable to deformations. The crucial problem is to estimate the physical parameters of a squeezed object to adjust the manipulation procedure, which poses a significant challenge. The research on physical parameters estimation using deep learning algorithms on measurements from direct interaction with objects using robotic grippers is scarce. In our work, we proposed a trainable system which performs the regression of an object stiffness coefficient from the signals registered during the interaction of the gripper with the object. First, using the physics simulation environment, we performed extensive experiments to validate our approach. Afterwards, we prepared a system that works in a real-world scenario with real data. Our learned system can reliably estimate the stiffness of an object, using the Yale OpenHand soft gripper, based on readings from Inertial Measurement Units (IMUs) attached to the fingers of the gripper. Additionally, during the experiments, we prepared three datasets of IMU readings gathered while squeezing the objects—two created in the simulation environment and one composed of real data. The dataset is the contribution to the community providing the way for developing and validating new approaches in the growing field of soft manipulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.