SUMMARY
Mononuclear phagocytes, including monocytes, macrophages and dendritic cells, contribute to tissue integrity, as well as innate and adaptive immune defense. Emerging evidence for labour division indicates that manipulation of these cells could bear therapeutic potential. However, specific ontogenies of individual populations and the overall functional organisation of the cellular network are not well-defined. Here we report a fate mapping study of the murine monocyte and macrophage compartment taking advantage of constitutive and conditional CX3CR1 promoter-driven Cre recombinase expression. We have demonstrated that major tissue resident macrophage populations, including liver Kupffer cells, lung alveolar, splenic and peritoneal macrophages, are established prior to birth and maintain themselves subsequently during adulthood independent of replenishment by blood monocytes. Furthermore, we have established that the short-lived Ly6C+ monocytes constitute obligatory steady state precursors of blood-resident Ly6C− cells and that the abundance of Ly6C+ blood monocytes dynamically controls the circulation life span of their progeny.
Unprecedented proteome plasticity in response to stress in yeast is revealed using a novel screening platform that allows tracking of protein localization and abundance at single-cell resolution.
Cytosolic pH is a cellular signal involved both in the glucose sensing that mediates proteasome storage granule formation and in a more general mechanism for signaling carbon source exhaustion.
SUMMARY
The endomembrane system of yeast contains different tail-anchored proteins that are posttranslationally targeted to membranes via their C-terminal transmembrane domain. This hydrophobic segment may be hazardous in the cytosol if membrane insertion fails resulting in the need for energy-dependent chaperoning and the degradation of aggregated tail-anchored proteins. A cascade of GET proteins cooperates in a conserved pathway to accept newly synthesized tail-anchored proteins from ribosomes and guide them to a receptor at the endoplasmic reticulum where membrane integration takes place. It is, however, unclear how the GET system reacts to conditions of energy depletion that might prevent membrane insertion and hence lead to the accumulation of hydrophobic proteins in the cytosol. Here we show that the ATPase Get3, which accommodates the hydrophobic tail anchor of clients, has a dual function; promoting tail-anchored protein insertion when glucose is abundant and serving as an ATP-independent holdase chaperone during energy depletion. Like the generic chaperones Hsp42, Ssa2, Sis1 and Hsp104, we found that Get3 moves reversibly to deposition sites for protein aggregates, hence supporting the sequestration of tail-anchored proteins under conditions that prevent tail-anchored protein insertion. Our findings support a ubiquitous role for the cytosolic GET complex as a triaging platform involved in cellular proteostasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.