Species occurrences inherently include positional error. Such error can be problematic for species distribution models (SDMs), especially those based on fine-resolution environmental data. It has been suggested that there could be a link between the influence of positional error and the width of the species ecological niche. Although positional errors in species occurrence data may imply serious limitations, especially for modelling species with narrow ecological niche, it has never been thoroughly explored. We used a virtual species approach to assess the effects of the positional error on fine-scale SDMs for species with environmental niches of different widths. We simulated three virtual species with varying niche breadth, from specialist to generalist. The true distribution of these virtual species was then altered by introducing different levels of positional error (from 5 to 500 m). We built generalized linear models and MaxEnt models using the distribution of the three virtual species (unaltered and altered) and a combination of environmental data at 5 m resolution. The models' performance and niche overlap were compared to assess the effect of positional error with varying niche breadth in the geographical and environmental space. The positional error negatively impacted performance and niche overlap metrics. The amplitude of the influence of positional error depended on the species niche, with models for specialist species being more affected than those for generalist species. The positional error had the same effect on both modelling techniques. Finally, increasing sample size did not mitigate the negative influence of positional error. We showed that fine-scale SDMs are considerably affected by positional error, even when such error is low. Therefore, where new surveys are undertaken, we recommend paying attention to data collection techniques to minimize the positional error in occurrence data and thus to avoid its negative effect on SDMs, especially when studying specialist species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.