The net ecosystem CO exchange (NEE) drives the carbon (C) sink-source strength of northern peatlands. Since NEE represents a balance between various production and respiration fluxes, accurate predictions of its response to global changes require an in depth understanding of these underlying processes. Currently, however, detailed information of the temporal dynamics as well as the separate biotic and abiotic controls of the NEE component fluxes is lacking in peatland ecosystems. In this study, we address this knowledge gap by using an automated chamber system established across natural and trenching/vegetation removal plots to partition NEE into its production (i.e., gross and net primary production; GPP and NPP) and respiration (i.e., ecosystem, heterotrophic and autotrophic respiration; ER, Rh and Ra) fluxes in a boreal peatland in northern Sweden. Our results showed that daily NEE patterns were driven by GPP while variations in ER were governed by Ra rather than Rh. Moreover, we observed pronounced seasonal shifts in the Ra/Rh and above/belowground NPP ratios throughout the main phenological phases. Generalized linear model analysis revealed that the greenness index derived from digital images (as a proxy for plant phenology) was the strongest control of NEE, GPP and NPP while explaining considerable fractions also in the variations of ER and Ra. In addition, our data exposed greater temperature sensitivity of NPP compared to Rh resulting in enhanced C sequestration with increasing temperature. Overall, our study suggests that the temporal patterns in NEE and its component fluxes are tightly coupled to vegetation dynamics in boreal peatlands and thus challenges previous studies that commonly identify abiotic factors as key drivers. These findings further emphasize the need for integrating detailed information on plant phenology into process-based models to improve predictions of global change impacts on the peatland C cycle.
Gross primary production (GPP) is a key driver of the peatland carbon cycle. Although many studies have explored the apparent GPP under natural light conditions, knowledge of the maximum GPP at light-saturation (GPPmax) and its spatio-temporal variation is limited. This information, however, is crucial since GPPmax essentially constrains the upper boundary for apparent GPP. Using chamber measurements combined with an external light source across experimental plots where vegetation composition was altered through long-term (20-year) nitrogen addition and artificial warming, we could quantify GPPmax in-situ and disentangle its biotic and abiotic controls in a boreal peatland. We found large spatial and temporal variations in the magnitudes of GPPmax which were related to vegetation species composition and phenology rather than abiotic factors. Specifically, we identified vegetation phenology as the main driver of the seasonal GPPmax trajectory. Abiotic anomalies (i.e. in air temperature and water table level), however, caused species-specific divergence between the trajectories of GPPmax and plant development. Our study demonstrates that photosynthetically active biomass constrains the potential peatland photosynthesis while abiotic factors act as secondary modifiers. This further calls for a better representation of species-specific vegetation phenology in process-based peatland models to improve predictions of global change impacts on the peatland carbon cycle.
Boreal peatland energy balances using the eddy covariance technique have previously been made in Alaska, Canada, Scandinavia, and Western Siberia, but not in the European portion of the Russian Federation. European Russia contains approximately 200,000 km(2) of peatlands and has a boreal (subarctic), continental climate influencing the region's energy balance. To help fill this research gap, the surface energy balance was determined for a boreal peatland fen in the Komi Republic of Russia for an 11-month period in 2008-2009 using the eddy covariance method. The total measurement period's cumulative energy balance closure rate was 86%, with higher closure during the critical summer growing season. Similar to other boreal peatland sites, the mid-summer shortwave radiation demonstrated albedo between 0.13 and 0.19 as calculated on a cumulative monthly basis, whereas monthly albedo was >0.9 during the months with greatest snow (January, February 2009). Mid-summer Bowen ratios averaged 0.20-0.25 on a cumulative basis, with monthly averaged mid-day values in the range 0.35-0.53 during the growing season. Latent energy (LE) fluxes exceeded 70% of net radiation and 60% of potential evapotranspiration. During the study period, total evapotranspiration (406 mm) was slightly greater than rainfall (389 mm), with later snowfalls creating excess moisture in the atmospheric water budget. These characteristics together point to a peatland whose energy balance behavior is generally consistent with data from other boreal fens. The LE fluxes were dominantly controlled by net radiation, with less canopy resistance than at other northern fens and a lighter role for vapor pressure deficit to play in the energy balance. The aerodynamic and canopy conductance terms were of similar magnitude, both through the season and through any given diurnal cycle. The consequently high decoupling coefficient (0.65 +/- 0.16 in the growing season) allows further modeling of fens in this region with reduced effects from the uncertainties of parameterizing surface conductance terms and their responses to water table and vapor pressure deficit changes. The Priestley-Taylor method provides a reasonable approach to modeling evapotranspiration, given some assumptions about the site's energy balance closure. This understanding of the local drivers on the energy and water budgets has important implications for peatland ecology and growth, regional carbon dynamics, and downstream hydrology. (C) 2014 The Authors. Published by Elsevier B.V
A B S T R A C T Peatlands are one of the major natural sources of methane (CH 4 ), but the quantification of efflux is uncertain especially during winter, fall and the highly dynamic spring thaw period. Here, we report pronounced diurnal variations in CH 4 fluxes (F CH4 ), measured using the eddy-covariance technique during the snow-thawing period at a boreal peatland in north-western Russia. Following the background winter emission of ∼0.5 mg m −2 h −1 , strong diurnal variability in CH 4 fluxes from 21 April to 3 May was apparently controlled by changes in surface temperature (T sur ) and near-surface turbulence as indicated by the friction velocity (u * ). CH 4 fluxes were ∼0.8 mg m −2 h −1 during night and ∼3 mg m −2 h −1 during peak efflux. Primarily, the freeze-thaw cycle of an ice layer observed at the wet peatland microforms due to surface temperatures oscillating between >0 • C during the days and <0 • C during the nights appeared to strongly influence diurnal variability. Once the ice layer was melted, increases in wind speed seemed to enhance CH 4 efflux, possibly by increased mixing of the water surface. Apparently, a combination of physical factors is influencing the gas transport processes of CH 4 efflux during the highly dynamic spring thaw period.
Evapotranspiration is a source of water vapour to the atmosphere, and as a crucial indicator of landscape behaviour its accurate measurement has widespread implications. Here we investigate errors that are prevalent and systematic in the closed-path eddy-covariance measurement of latent heat flux: the attenuation of fluxes through dampened cospectral power at high frequencies. This process is especially pronounced during periods of high relative humidity through the adsorption and desorption of water vapour along the tube walls. These effects are additionally amplified during lower air temperature conditions. Here, we quantify the underestimation of evapotranspiration by a closed-path system by comparing its flux estimate to simultaneous and adjacent measurements from an open-path sensor. We apply models relating flux loss to relative humidity itself, to the lag time of the cross-correlation peak between the water vapour and vertical wind velocity signals, and to models of cospectral attenuation relative to the cospectral power of simultaneous sensible heat-flux measurements. We find that including the role of temperature in modifying the attenuation-humidity relationship is essential for unbiased flux correction, and that physically based cospectral attenuation methods are effective characterizers of closed-path instrument signal loss relative to the unattenuated flux value
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.