Here, we present empirical ground penetrating radar (GPR) and electroresistivity tomography data (ERT) to verify the cold-temperate transition surface-permafrost base (CTS-PB) axis theoretical model. The data were collected from Storglaciären, in Tarfala, Northern Sweden, and its forefield. The GPR results show a material relation between the glacial ice and the sediments incorporated in the glacier, and a geophysical relation between the “cold ice” and the “temperate ice” layers. Clearly identifying lateral glacier margins is difficult, as periglacial and glacial environments frequently overlap. In this case, we identified areas showing permafrost aggradation already under the glacier, particularly where the CTS is replaced by the PB surface. This structure appears as a result of the influence of a cold climate over both the glacial and periglacial environments. The results show how these surfaces form a specific continuous environmental axis; thus, both glacial and periglacial areas can be treated uniformly as a specific continuum in the geophysical sense. Similarly, other examples previously described also allow identifying a continuation of permafrost from the periglacial environment onto the glacial base. In addition, the ERT results show the presence of double-layered periglacial permafrost, possibly suggesting a past climatic fluctuation in the study area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.