In the course of more than 60-year history, penicillin G acylase (PGA) gained a unique position among enzymes used by pharmaceutical industry for production of β-lactam antibiotics. Kinetically controlled enzymatic syntheses of cephalosporins of novel generations in which PGA catalyzes coupling of activated acyl donor with nucleophile belong among the latest large-scale applications. Contrary to rather specific roles of other enzymes involved in β-lactam biocatalyses, the PGA seems to have the greatest potential. On the laboratory scale, other applications with industrial potential were described, e.g., directed evolution of the enzyme to meet specific demands of industrial processes or its modification into the enzyme catalyzing reactions with novel substrates. The fact that β-lactams represent the most important group of antibiotics comprising 65 % of the world antibiotic market explains such a tremendous and continuous interest in this enzyme. Indeed, the annual consumption of PGA has recently been estimated to range from 10 to 30 million tons. The application potential of the enzyme goes beyond the β-lactam biocatalysis due to its enantioselectivity and promiscuity: the PGA can be used for the production of achiral and chiral compounds convenient for the preparation of synthons and active pharmaceutical ingrediences, respectively. These biocatalyses, however, still wait for large-scale application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.