This work presents a vision based system for navigation on a vertical takeoff and landing unmanned aerial vehicle (UAV). This is a monocular vision based, simultaneous localization and mapping (SLAM) system, which measures the position and orientation of the camera and builds a map of the environment using a video stream from a single camera. This is different from past SLAM solutions on UAV which use sensors that measure depth, like LIDAR, stereoscopic cameras or depth cameras. Solution presented in this paper extends and significantly modifies a recent open-source algorithm that solves SLAM problem using approach fundamentally different from a traditional approach. Proposed modifications provide the position measurements necessary for the navigation solution on a UAV. The main contributions of this work include: (1) extension of the map building algorithm to enable it to be used realistically while controlling a UAV and simultaneously building the map; (2) improved performance of the SLAM algorithm for lower camera frame rates; and (3) the first known demonstration of a monocular SLAM algorithm successfully controlling a UAV while simultaneously building the map. This work demonstrates that a fully autonomous UAV that uses monocular vision for navigation is feasible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.