Depositional sequences originating in semi-enclosed basins with endemic biota, partly or completely isolated from the open ocean, frequently do not allow biostratigraphic correlations with the standard geological time scale (GTS). The Miocene stages of the Central Paratethys represent regional chronostratigraphic units that were defined in type sections mostly on the basis of biostratigraphic criteria. The lack of accurate dating makes correlation within and between basins of this area and at global scales difficult. Although new geochronological estimates increasingly constrain the age of stage boundaries in the Paratethys, such estimates can be misleading if they do not account for diachronous boundaries between lithostratigraphic formations and for forward smearing of first appearances of index species (Signor-Lipps effect), and if they are extrapolated to whole basins. Here, we argue that (1) geochronological estimates of stage boundaries need to be based on sections with high completeness and high sediment accumulation rates, and (2) that the boundaries should preferentially correspond to conditions with sufficient marine connectivity between the Paratethys and the open ocean. The differences between the timing of origination of a given species in the source area and timing of its immigration to the Paratethys basins should be minimized during such intervals. Here, we draw attention to the definition of the Central Paratethys regional time scale, its modifications, and its present-day validity. We suggest that the regional time scale should be adjusted so that stage boundaries reflect local and regional geodynamic processes as well as the opening and closing of marine gateways. The role of eustatic sea level changes and geodynamic processes in determining the gateway formation needs to be rigorously evaluated with geochronological data and spatially-explicit biostratigraphic data so that their effects can be disentangled.
The Komjatice depression, situated on the Danube Basin’s northern margin, represents a sub-basin of the Neogene epicontinental Central Paratethys Sea and Lake Pannon. The paper provides an insight into the character of sediment provenance evolution by study of well cores (ZM-1, IV-1, MOJ-1, VR-1 wells). A modern combination of provenance, sedimentology and biostratigraphy together with the reported redefinition of Pannonian formations resulted in a new lithostratigraphy of the study area. Moreover, newly published volcanic rock age data were used for calibration of biostratigraphy. The overall age span of the sedimentary fill is occupied only by late Badenian–Sarmatian (Serravallian) to Pannonian (Tortonian–Messinian) strata: 1) the basal alluvial sediments of the newly defined Zlaté Moravce Formation; 2) late Badenian–Sarmatian (Serravalian) marine sediments of the Vráble-Pozba Fm., connected with tectonic opening of the depression; 3) Pannonian (Tortonian) coarse grained sediments of the Nemčiňany Fm. with an erosional base; 4) Pannonian (Tortonian–Messinian) predominantly fine-grained, basin floor to slope Ivanka Fm., sandy deltaic Beladice Fm. and predominantly muddy, alluvial Volkovce Fm. In the middle Miocene provenance is situated in Paleozoic sequences and Neogene volcanic rocks occurring currently in the NE. During the late Miocene, provenance is changed to the NNW (Tribeč Mts.), although the transport from the NE also remained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.