The Danube Basin is situated between the Eastern Alps, Central Western Carpathians and Transdanubian Range. The northwestern embayment of the basin is represented by the Blatné depression with deposits ranked into the Langhian-Serravallian (Badenian, Sarmatian) and Tortonian-Pliocene (Pannonian-Pliocene). They are documented by the NN4, NN5 and NN6 calcareous nannoplankton zones; the CPN7 and CPN8 foraminiferal zones (equivalent to N9, N10 and N11 of global foraminiferal zones and to the MMi4a, MMi5 and MMi6 of Mediterranean foraminiferal zones) and by the mammalian zones MN9, MN10, MN13 and by Be isotopes. Sedimentation in basin began with basal conglomerates formed by local fan-deltas short before and during the initial rifting phase. Early Langhian conglomerates are composed of Mesozoic rocks derived from the sedimentary cover and nappe units of the Eastern Alps and Central Western Carpathians. The content of crystalline rocks increases upwards, which documents a continual denudation of the emerged source area (at present forming the pre-Neogene basement of the Danube Basin). The middle to late Langhian synrift stage of the basin development was accompanied by volcanic activity. Gravity transport of sediment took place on the basin slopes formed by pronounced fault activity. The basin floor reached the deep neritic zone. During the early Serravallian shelfal offshore sedimentary conditions prevailed and gradually passed into the late Serravallian regressive coastal plains with normal to brackish salinity. Tortonian transgressive sedimentation on the muddy shelves of Lake Pannon followed and was subsequently replaced by a relatively short-living deltaic environment and later by deposition on an alluvial plain. Final Pliocene to Quaternary fluvial sedimentation is characterized by gravel and sand beds. •
Abstract:The Danube / Kisalföld Basin is the north-western sub-basin of the Pannonian Basin System. The lithostratigraphic subdivision of the several-km-thick Upper Miocene to Pliocene sedimentary succession related to Lake Pannon has been developed independently in Slovakia and Hungary. A study of the sedimentary formations across the entire basin led us to claim that these formations are identical or similar between the two basin parts to such an extent that their correlation is indeed a matter of nomenclature only. Nemčiňany corresponds to the Kálla Formation, representing locally derived coarse clastics along the basin margins (11-9.5 Ma). The deep lacustrine sediments are collectively designated the Ivanka Formation in Slovakia, while in Hungary they are subdivided into Szák (fine-grained transgressive deposits above basement highs, 10.5 -8.9 Ma), Endrőd (deep lacustrine marls, 11.6 -10 Ma), Szolnok (turbidites, 10.5 -9.2 Ma) and Algyő Formations (fine-grained slope deposits, 10 -9 Ma). The Beladice Formation represents shallow lacustrine deltaic deposits, fully corresponding to Újfalu (10.5 -8.7 Ma). The overlying fluvial deposits are the Volkovce and Zagyva Formations (10 -6 Ma). The synoptic description and characterization of these sediments offer a basin-wide insight into the development of the basin during the Late Miocene. The turbidite systems, the slope, the overlying deltaic and fluvial systems are all genetically related and are coeval at any time slice after the regression of Lake Pannon initiated about 10 Ma ago. All these formations get younger towards the S, SE as the progradation of the shelf-slope went on. The basin got filled up to lake level by 8.7 Ma, since then fluvial deposition dominated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.