Real valued homomorphisms on the algebra of smooth functions on a differential space are described. The concept of generators of this algebra is emphasized in this description.
It is known that every Sikorski space with the countably generated differential structure is smoothly real-compact. It means that every homomorphism from its differential structure, which forms a ring of smooth real-valued functions into the ring of real numbers, is an evaluation. This result is sharp: there is a non-smoothly real-compact Sikorski space with the differential structure which is not countably generated. We provide an easy example demonstrating this. By modifying this example we are able to show a certain shortcoming of the generator embedding, comparing to the canonical embedding, for Sikorski spaces. Finally, we note that a homomorphism from the ring of smooth functions of a Sikorski space into the ring of real numbers is an evaluation if and only if it is continuous.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.