Intensive farming on land represents an increased burden on the environment due to, among other reasons, the usage of agrochemicals. Precision farming can reduce the environmental burden by employing site specific crop management practices which implement advanced geospatial technologies for respecting soil heterogeneity. The objectives of this paper are to present the frontier approaches of geospatial (Big) data processing based on satellite and sensor data which both aim at the prevention and mitigation phases of disaster risk reduction in agriculture. Three techniques are presented in order to demonstrate the possibilities of geospatial (Big) data collection in agriculture: (1) farm machinery telemetry for providing data about machinery operations on fields through the developed MapLogAgri application; (2) agrometeorological observation in the form of a wireless sensor network together with the SensLog solution for storing, analysing, and publishing sensor data; and (3) remote sensing for monitoring field spatial variability and crop status by means of freely-available high resolution satellite imagery. The benefits of re-using the techniques in disaster risk reduction processes are discussed. The conducted tests demonstrated the transferability of agricultural techniques to crisis/emergency management domains.
Both agricultural and environmental domains have to manage many different and heterogeneous sources of information that need to be combined in order to make environmentally and economically sound decisions. Such examples may be found at the definition of subsidies, national strategies for rural development, development of sustainable agriculture etc. This paper describes in detail the development of an open data model for (precision) agriculture applications and agricultural pollution monitoring when aiming at identification of requirements from users from agricultural and environmental domains. The presented open data model for (precision) agriculture applications and agricultural pollution monitoring has been registered under the GEOSS (Global Earth Observation System of Systems) Architecture Implementation Pilot-Phase 8 in order to support the wide variety of demands that are primary aimed at agriculture and water pollution monitoring.
Big data have also become a big challenge for cartographers, as the majority of big data may be localized. The use of visual analytics tools, as well as comprising interactive maps, stimulates inter-disciplinary actors to explore new ideas and decision-making methods. This paper deals with the evaluation of three map-based visual analytics tools by means of the eye-tracking method. The conceptual part of the paper begins with an analysis of the state-of-the-art and ends with the design of proof-of-concept experiments. The verification part consists of the design, composition, and realization of the conducted eye-tracking experiment, in which three map-based visual analytics tools were tested in terms of user-friendliness. A set of recommendations on GUI (graphical user interface) design and interactive functionality for map makers is formulated on the basis of the discovered errors and shortcomings in the assessed stimuli. The results of the verification were used as inputs for improving the three tested map-based visual analytics tools and might serve as a best practice for map-based visual analytics tools in general, as well as for improving the policy making cycle as elaborated by the European project PoliVisu (Policy Development based on Advanced Geospatial Data Analytics and Visualization).
Land-use and land-cover (LULC) themes are important for many domains, especially when they process environmental and socio-economic phenomena. The evolution of a land-use database called Open Land Use (OLU) started in 2013 and was continued by adapting many user requirements. The goal of this study was to design a new version of the OLU database that would better fit the gathered user requirements collected by projects using LULC data. A formal definition of the developed data model through Unified Modeling Language (UML) class diagrams, a feature catalogue based on ISO 19110 and SQL scripts for setting up the OLU database, are the key achievements of the presented paper. The presented research provides a multi-scale open database of LULC information supporting the DestinE initiative to develop a very-high-precision digital model of the earth. The novel spatio-temporal thematic approach also lies in modular views of the OLU database.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.