In recent years, the application of artificial intelligence (AI) has become more and more widespread in medicine and dentistry. It may contribute to improved quality of health care as diagnostic methods are getting more accurate and diagnostic errors are rarer in daily medical practice. The aim of this paper was to present data from the literature on the effectiveness of AI in orthodontic diagnostics based on the analysis of lateral cephalometric radiographs. A review of the literature from 2009 to 2023 has been performed using PubMed, Medline, Scopus and Dentistry & Oral Sciences Source databases. The accuracy of determining cephalometric landmarks using widely available commercial AI-based software and advanced AI algorithms was presented and discussed. Most AI algorithms used for the automated positioning of landmarks on cephalometric radiographs had relatively high accuracy. At the same time, the effectiveness of using AI in cephalometry varies depending on the algorithm or the application type, which has to be accounted for during the interpretation of the results. In conclusion, artificial intelligence is a promising tool that facilitates the identification of cephalometric landmarks in everyday clinical practice, may support orthodontic treatment planning for less experienced clinicians and shorten radiological examination in orthodontics. In the future, AI algorithms used for the automated localisation of cephalometric landmarks may be more accurate than manual analysis.
Ocena profilu twarzy pacjenta ma istotne znaczenie w diagnostyce oraz planowaniu leczenia ortodontycznego. Tkanki miękkie mogą się znacznie różnić grubością, a przez to maskować występowanie istotnych zaburzeń szkieletowo-zębowych. Cel. Celem pracy było przedstawienie danych z aktualnego piśmiennictwa dotyczących zależności między grubością tkanek miękkich profilu twarzy a klasą szkieletową oraz płcią pacjenta. Materiał i metody. Wykorzystując bazę danych PubMed, wyszukano artykuły na temat istniejących zależności między grubością tkanek miękkich profilu twarzy a klasą szkieletową oraz płcią badanych z lat 2002-2020, z użyciem słów kluczowych: facial soft tissue thickness, malloclusion, skeletal class, facial soft tissue depth. Wyniki.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.