We study inference in shift-share regression designs, such as when a regional outcome is regressed on a weighted average of observed sectoral shocks, using regional sector shares as weights. We conduct a placebo exercise in which we estimate the effect of a shift-share regressor constructed with randomly generated sectoral shocks on actual labor market outcomes across U.S. Commuting Zones. Tests based on commonly used standard errors with 5% nominal significance level reject the null of no effect in up to 55% of the placebo samples. We use a stylized economic model to show that this overrejection problem arises because regression residuals are correlated across regions with similar sectoral shares, independently of their geographic location. We derive novel inference methods that are valid under arbitrary cross-regional correlation in the regression residuals. We show that our methods yield substantially wider confidence intervals in popular applications of shift-share regression designs.
We consider inference in regression discontinuity designs when the running variable only takes a moderate number of distinct values. In particular, we study the common practice of using confidence intervals (CIs) based on standard errors that are clustered by the running variable as a means to make inference robust to model misspecification (Lee and Card, 2008). We derive theoretical results and present simulation and empirical evidence showing that these CIs do not guard against model misspecification, and that they have poor coverage properties. We therefore recommend against using these CIs in practice. We instead propose two alternative CIs with guaranteed coverage properties under easily interpretable restrictions on the conditional expectation function. * We thank Joshua Angrist, Tim Armstrong, Guido Imbens, Philip Oreopoulos, and Miguel Urquiola and seminar participants at Columbia University, Villanova University, and the 2017 SOLE Annual Meeting for helpful comments and discussions.
Financial support for this research was generously provided through NSF grant 0820361. The views expressed herein are those of the authors and do not necessarily reflect the views of the National Bureau of Economic Research. NBER working papers are circulated for discussion and comment purposes. They have not been peerreviewed or been subject to the review by the NBER Board of Directors that accompanies official NBER publications.
We consider the problem of constructing confidence intervals (CIs) for a linear functional of a regression function, such as its value at a point, the regression discontinuity parameter, or a regression coefficient in a linear or partly linear regression. Our main assumption is that the regression function is known to lie in a convex function class, which covers most smoothness and/or shape assumptions used in econometrics. We derive finite‐sample optimal CIs and sharp efficiency bounds under normal errors with known variance. We show that these results translate to uniform (over the function class) asymptotic results when the error distribution is not known. When the function class is centrosymmetric, these efficiency bounds imply that minimax CIs are close to efficient at smooth regression functions. This implies, in particular, that it is impossible to form CIs that are substantively tighter using data‐dependent tuning parameters, and maintain coverage over the whole function class. We specialize our results to inference on the regression discontinuity parameter, and illustrate them in simulations and an empirical application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.