Plants have been used for medical purposes since the beginning of human history and are the basis of modern medicine. Most chemotherapeutic drugs for cancer treatment are molecules identified and isolated from plants or their synthetic derivatives. Our hypothesis was that whole plant extracts selected according to ethnobotanical sources of historical use might contain multiple molecules with antitumor activities that could be very effective in killing human cancer cells. This study examined the effects of three whole plant extracts (ethanol extraction) on human tumor cells. The extracts were from Urtica membranacea (Urticaceae), Artemesia monosperma (Asteraceae), and Origanum dayi post (Labiatae). All three plant extracts exhibited dose- and time-dependent killing capabilities in various human derived tumor cell lines and primary cultures established from patients' biopsies. The killing activity was specific toward tumor cells, as the plant extracts had no effect on primary cultures of healthy human cells. Cell death caused by the whole plant extracts is via apoptosis. Plant extract 5 (Urtica membranacea) showed particularly strong anticancer capabilities since it inhibited actual tumor progression in a breast adenocarcinoma mouse model. Our results suggest that whole plant extracts are promising anticancer reagents.
There is ample evidence that somatic cell differentiation during development is accompanied by extensive DNA demethylation of specific sites that vary between cell types. Although the mechanism of this process has not yet been elucidated, it is likely to involve the conversion of 5mC to 5hmC by Tet enzymes. We show that a Tet2/ Tet3 conditional knockout at early stages of B-cell development largely prevents lineage-specific programmed demethylation events. This lack of demethylation affects the expression of nearby B-cell lineage genes by impairing enhancer activity, thus causing defects in B-cell differentiation and function. Thus, tissue-specific DNA demethylation appears to be necessary for proper somatic cell development in vivo.NA methylation takes place at almost all stages of development including the early embryo as well as during lineage commitment and is mediated through a combination of active and passive processes. Recent studies have raised the possibility that demethylation can occur through the involvement of the teneleven-translocation family (Tet1, Tet2, and Tet3) that catalyzes the oxidation of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) as a first step in the pathway (1, 2). Removal of this unusual base may then be accomplished either by further oxidation followed by base excision repair (3) or through replication dilution (4-6). Genetic experiments have demonstrated that Tet enzymes are key players during early development, with Tet3-mediated DNA hydroxylation being involved in epigenetic programming of the zygotic paternal DNA (7, 8), whereas combinations of Tet1 and Tet2 play a role in the demethylation process that takes place during embryonic stem cell differentiation in vitro (2, 9-12).Tet enzymes also contribute to lineage development. Thus, changes in the pattern of 5hmC have been shown to accompany neurogenesis in vivo (13) (21)] appear to alter global 5hmC and 5mC distribution, perturb stem cell self-renewal, cause altered differentiation, and predispose to malignancies (refs. 19, 22, reviewed in ref. 23). None of these studies, however, has addressed the key question of whether demethylation itself is actually required for gene activation and proper lineage differentiation. To this end, we generated a Tet2/Tet3 knockout specific to B-lymphoid development, isolated cells at different stages of differentiation, and analyzed their methylation patterns. Because this approach targets the demethylation machinery in an exclusive manner, it allowed us to evaluate the role of this modification independently of the many transcription factors that drive the process of B-cell differentiation. ResultsIt has already been shown that both Tet2 and Tet3 are highly expressed in B lineage cells (24). With this in mind, we generated Tet2F mice (18, 23) and crossed them with animals expressing Cre under control of the early B-cell-specific Mb1 promoter (25) to obtain mice with a conditional knockout of these enzymes specifically in the B-cell lineage (Materials and Methods). Reduced repres...
Pathogenesis of neurodegenerative diseases involves dysfunction of mitochondria, one of the most important cell organelles in the brain, with its most prominent roles in producing energy and regulating cellular metabolism. Here we investigated the effect of transferring active intact mitochondria as a potential therapy for Alzheimer's disease (AD), in order to correct as many mitochondrial functions as possible, rather than a mono-drug related therapy. For this purpose, AD-mice (amyloid- intracerebroventricularly injected) were treated intravenously (IV) with fresh human isolated mitochondria. One to two weeks later, a significantly better cognitive performance was noticed in the mitochondria treated AD-mice relative to vehicle treated AD-mice, approaching the performance of non-AD mice. We also detected a significant decrease in neuronal loss and reduced gliosis in the hippocampus of treated mice relative to untreated AD-mice. An amelioration of the mitochondrial dysfunction in brain was noticed by the increase of citrate-synthase and cytochrome c oxidase activities relative to untreated AD-mice, reaching activity levels of non-AD-mice. Increased mitochondrial activity was also detected in the liver of mitochondria treated mice. No treatment-related toxicity was noted. Thus, IV mitochondrial transfer may possibly offer a novel therapeutic approach for AD.
One of the emerging hallmarks of cancer illustrates the importance of metabolic reprogramming, necessary to synthesize the building blocks required to fulfill the high demands of rapidly proliferating cells. However, the proliferation-independent instructive role of metabolic enzymes in tumor plasticity is still unclear. Here, we provide evidence that glutathione peroxidase 8 (GPX8), a poorly characterized enzyme that resides in the endoplasmic reticulum, is an essential regulator of tumor aggressiveness. We found that GPX8 expression was induced by the epithelial–mesenchymal transition (EMT) program. Moreover, in breast cancer patients, GPX8 expression significantly correlated with known mesenchymal markers and poor prognosis. Strikingly, GPX8 knockout in mesenchymal-like cells (MDA-MB-231) resulted in an epithelial-like morphology, down-regulation of EMT characteristics, and loss of cancer stemness features. In addition, GPX8 knockout significantly delayed tumor initiation and decreased its growth rate in mice. We found that these GPX8 loss-dependent phenotypes were accompanied by the repression of crucial autocrine factors, in particular, interleukin-6 (IL-6). In these cells, IL-6 bound to the soluble receptor (sIL6R), stimulating the JAK/STAT3 signaling pathway by IL-6 trans-signaling mechanisms, so promoting cancer aggressiveness. We observed that in GPX8 knockout cells, this signaling mechanism was impaired as sIL6R failed to activate the JAK/STAT3 signaling pathway. Altogether, we present the GPX8/IL-6/STAT3 axis as a metabolic-inflammatory pathway that acts as a robust regulator of cancer cell aggressiveness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.