Recently, ridesharing services have grown rapidly. In future, fleets of shared and pooled autonomous vehicles may transform urban mobility. In this paper, we introduce an approach to dynamically simulate these services within a fullstack transport simulation using an insertion-based algorithm. In a first test case, using a taxi data set from Berlin, the potential for shared rides is evaluated using a fleet of vehicles with a capacity between two and four ride requests. The simulation suggests that the overall vehicle kilometers traveled may be reduced by 15-20 % , while travel time increases can be kept at a relatively low level of less than three minutes per person. Additionally, the simulation results suggest in which areas of the city it may be the most rewarding to offer shared services.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.