A common strategy by which bacterial pathogens reside in humans is by shifting from a virulent lifestyle, (systemic infection), to a dormant carrier state. Two major serovars of Salmonella enterica, Typhi and Typhimurium, have evolved a two-component regulatory system to exist inside Salmonella-containing vacuoles in the macrophage, as well as to persist as asymptomatic biofilms in the gallbladder. Here we present evidence that SsrB, a transcriptional regulator encoded on the SPI-2 pathogenicity-island, determines the switch between these two lifestyles by controlling ancestral and horizontally-acquired genes. In the acidic macrophage vacuole, the kinase SsrA phosphorylates SsrB, and SsrB~P relieves silencing of virulence genes and activates their transcription. In the absence of SsrA, unphosphorylated SsrB directs transcription of factors required for biofilm formation specifically by activating csgD (agfD), the master biofilm regulator by disrupting the silenced, H-NS-bound promoter. Anti-silencing mechanisms thus control the switch between opposing lifestyles.DOI: http://dx.doi.org/10.7554/eLife.10747.001
We demonstrate the growth of high quality single phase films of VO2(A, B, and M) on SrTiO3 substrate by controlling the vanadium arrival rate (laser frequency) and oxidation of the V atoms. A phase diagram has been developed (oxygen pressure versus laser frequency) for various phases of VO2 and their electronic properties are investigated. VO2(A) phase is insulating VO2(B) phase is semi-metallic, and VO2(M) phase exhibits a metal-insulator transition, corroborated by photo-electron spectroscopic studies. The ability to control the growth of various polymorphs opens up the possibility for novel (hetero)structures promising new device functionalities.
A simple procedure was developed for the fabrication of electrochemical glucose biosensors using glucose oxidase (GOx), with graphene or multi-walled carbon nanotubes (MWCNTs). Graphene and MWCNTs were dispersed in 0.25% 3-aminopropyltriethoxysilane (APTES) and drop cast on 1% KOH-pre-treated glassy carbon electrodes (GCEs). The EDC (1-ethyl-(3-dimethylaminopropyl) carbodiimide)-activated GOx was then bound covalently on the graphene- or MWCNT-modified GCE. Both the graphene- and MWCNT-based biosensors detected the entire pathophysiological range of blood glucose in humans, 1.4–27.9 mM. However, the direct electron transfer (DET) between GOx and the modified GCE’s surface was only observed for the MWCNT-based biosensor. The MWCNT-based glucose biosensor also provided over a four-fold higher current signal than its graphene counterpart. Several interfering substances, including drug metabolites, provoked negligible interference at pathological levels for both the MWCNT- and graphene-based biosensors. However, the former was more prone to interfering substances and drug metabolites at extremely pathological concentrations than its graphene counterpart.
At the nano-bio interface, human plasma differentially interacts with engineered nanomaterials through the creation of protein coronas, which in turn become primary determinants of both the pharmacokinetics and pharmacodynamics of circulating nanoparticles. Here, for the first time, the specific binding kinetics of the four major corona forming proteins (human serum albumin, fibrinogen, ApoA1, and polyclonal IgG) are determined for gold nanoparticles (AuNPs). Using a multiplexed surface plasmonic assay, highly reproducible measurements of on rate (k(on)), off rate (k(off)), and disassociation constant (K(D)), in addition to relative amounts of protein binding, are obtained. Dramatic differences in k(on) for individual components are shown as primary determinants of protein affinities, with k(on) ranging over nearly two orders of magnitude for the proteins studied, while k(off) remains within a factor of two for the set. The effect of polyethylene glycol (PEG) modification on plasma component binding is also studied and the effect of PEG length on human serum interaction is characterized through systematic screening of PEG molecular weight (2-30k). The effect of nanoparticle modification on particle targeting is also characterized through study of a hybrid AuNP system.
In this manuscript, we demonstrate a method based on atomic force microscopy which enables local probing of surface wettability. The maximum pull-off force, obtained from force spectroscopy shows a remarkable correlation with the macroscopically observed water contact angle, measured over a wide variety of surfaces starting from hydrophilic, all the way through to hydrophobic ones. This relationship, consequently, facilitates the establishment of a universal behaviour. The adhesion forces scale with the polar component of surface energy. However, no such relation could be established with the dispersive component. Hence, we postulate that the force(s) which enable us to correlate the force spectroscopy data measured on the nanoscale to the macroscopic contact angle are primarily arising from electrostatic-dipole-dipole interactions at the solid-liquid interface. London forces play less of a role. This effect in is line with density functional theory (DFT) calculations suggesting a higher degree of hydroxylation of hydrophilic surfaces. This result shows that molecular simulations and measurements on an atomic scale can be extrapolated to macroscopic surface wetting problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.