In this study, we analysed the expression level of sera circulating miRNA-5196 in rheumatoid arthritis (RA) and ankylosing spondylitis (AS) patients before and after tumor necrosis factor (TNF)-α therapy as biomarkers predicting positive treatment outcome. We enrolled 10 RA patients, 13 AS patients, and 12 healthy individuals in the study. The expression of miRNA-5196 was measured by real-time polymerase chain reaction before and after anti-TNF-α therapy. Disease activity of RA patients was assessed using disease activity score 28 (DAS28), whereas ankylosing spondylitis DAS (ASDAS) was used in AS patients. MiRNA-5196 expression was significantly higher in patients with RA and AS before TNF-α therapy than in those following anti-TNF-α therapy and healthy controls. Changes in miRNA-5196 expression positively correlated with delta DAS28 or delta ASDAS, respectively, following TNF-α therapy. In contrast, changes in C-reactive protein (CRP) levels in RA and AS patients did not positively correlate with DAS28 or ASDAS changes. Receiver-operating characteristic analysis showed better diagnostic accuracy of miRNA-5196 expression both in RA (area under curve (AUC) = 0.87, p = 0.055) and AS patients (AUC = 0.90, p = 0.050) compared to CRP levels in RA (AUC = 0.75, p = 0.201) and AS patients (AUC = 0.85, p = 0.086) upon biologic therapy treatment. Finding novel biomarkers, including miRNA-5196 which allow to predict and monitor anti-TNF-α response, would be of clinical value especially during the early phase of RA or AS development.
These results suggest that microRNA-5196 can be used as a potential biomarker characterising SSc. Overall, this study may open new possibilities for the development of microRNA-5196-based diagnostics and therapy in early phases of SSc.
Intratumoral heterogeneity is a driver of breast cancer progression, but the nature of the clonal interactive network involved in this process remains unclear. Here, we optimized the use of optical barcoding to visualize and characterize 31 cancer subclones in vivo. By mapping the clonal composition of thousands of metastases in two clinically relevant sites, the lungs and liver, we found that metastases were highly polyclonal in lungs but not in the liver. Furthermore, the transcriptome of the subclones varied according to their metastatic niche. We also identified a reversible niche-driven signature that was conserved in lung and liver metastases collected during patient autopsies. Among this signature, we found that the tumor necrosis factor–α pathway was up-regulated in lung compared to liver metastases, and inhibition of this pathway affected metastasis diversity. These results highlight that the cellular and molecular heterogeneity observed in metastases is largely dictated by the tumor microenvironment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.