Abstract-Broadband macromodeling of large multiport systems by vector fitting can be time consuming and resource demanding when all elements of the system matrix share a common set of poles. This letter presents a robust approach which removes the sparsity of the block-structured least-squares equations by a direct application of the QR decomposition. A 60-port printed circuit board example illustrates that considerable savings in terms of computation time and memory requirements are obtained.
Abstract-This paper presents an efficient technique for fast generation of sparse systems of linear equations arising in computational electromagnetics in a finite element method using higher order elements. The proposed approach employs a graphics processing unit (GPU) for both numerical integration and matrix assembly. The performance results obtained on a test platform consisting of a Fermi GPU (1x Tesla C2075) and a CPU (2x twelve-core Opterons), indicate that the GPU implementation of the matrix generation allows one to achieve speedups by a factor of 81 and 19 over the optimized singleand multi-threaded CPU-only implementations, respectively.
Convenient means of obtaining a Debye model of the dielectric dispersion are given for media whose properties are given either by the Cole-Cole model or numerical data in the frequency domain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.