Background In mid-December 2020, Israel had started a nationwide mass vaccination campaign against COVID-19. In the first few weeks, medical personnel, elderly citizens and patients with chronic diseases were prioritized. As such, patients with primary and secondary immunodeficiencies were encouraged to receive the vaccine. While the efficacy of RNA-based COVID-19 vaccines was demonstrated in the general population, little is known about their efficacy and safety in patients with Inborn Errors of Immunity (IEI). Objectives To evaluate the humoral and cellular immune response to COVID-19 vaccine in a cohort of IEI patients. Methods 26 adult patients were enrolled, and plasma and peripheral blood mononuclear cells were collected two weeks following the second dose of Pfizer-BioNTech COVID-19 vaccine. Humoral response was evaluated by testing anti-SARS-CoV-2 Spike (S) Receptor Binding Domain (RBD) and anti-Nuclear (N) antibody titers, and evaluation of neutralizing ability by inhibition of RBD:ACE2 binding. Cellular immune response was evaluated by ELISpot, estimating IL2 and IFNγ secretion in response to pooled SARS-CoV-2 S or M peptides. Results Our cohort included 18 patients with predominantly antibody deficiency, 2 with combined immunodeficiency, 3 with immune-dysregulation, and 3 with other genetically defined diagnoses. 22/26 were receiving immunoglobulin replacement therapy. 18/26 developed specific antibody response and 19/26 showed S-peptide specific T-cell response. None of the patients reported significant adverse events. Conclusion Vaccinating IEI patients is safe, and most patients were able to develop vaccine specific antibody response, S-protein specific cellular response or both.
BACKGROUND & AIM: Patients with inflammatory bowel diseases (IBD), specifically those treated with anti-tumor necrosis factor (TNF)a biologics, are at high risk for vaccine-preventable infections. Their ability to mount adequate vaccine responses is unclear. The aim of the study was to assess serologic responses to messenger RNA-Coronavirus Disease 2019 vaccine, and safety profile, in patients with IBD stratified according to therapy, compared with healthy controls (HCs). METHODS: Prospective, controlled, multicenter Israeli study. Subjects enrolled received 2 BNT162b2 (Pfizer/BioNTech) doses. Anti-Gastroenterology 2021;-:1-14 CLINICAL ATspike antibody levels and functional activity, anti-TNFa levels and adverse events (AEs) were detected longitudinally. RE-SULTS: Overall, 258 subjects: 185 IBD (67 treated with anti-TNFa, 118 non-anti-TNFa), and 73 HCs. After the first vaccine dose, all HCs were seropositive, whereas w7% of patients with IBD, regardless of treatment, remained seronegative. After the second dose, all subjects were seropositive, however anti-spike levels were significantly lower in anti-TNFa treated compared with non-anti-TNFa treated patients, and HCs (both P < .001). Neutralizing and inhibitory functions were both lower in anti-TNFa treated compared with non-anti-TNFa treated patients, and HCs (P < .03; P < .0001, respectively). Anti-TNFa drug levels and vaccine responses did not affect anti-spike levels. Infection rate (w2%) and AEs were comparable in all groups. IBD activity was unaffected by BNT162b2. CONCLUSIONS: In this prospective study in patients with IBD stratified according to treatment, all patients mounted serologic response to 2 doses of BNT162b2; however, its magnitude was significantly lower in patients treated with anti-TNFa, regardless of administration timing and drug levels. Vaccine was safe. As vaccine serologic response longevity in this group may be limited, vaccine booster dose should be considered.
The interactions between antibodies, SARS-CoV-2 and immune cells contribute to the pathogenesis of COVID-19 and protective immunity. To understand the differences between antibody responses in mild versus severe cases of COVID-19, we analyzed the B cell responses in patients 1.5 months post SARS-CoV-2 infection. Severe, and not mild, infection correlated with high titers of IgG against Spike receptor binding domain (RBD) that were capable of ACE2:RBD inhibition. B cell receptor (BCR) sequencing revealed that VH3-53 was enriched during severe infection. Of the 22 antibodies cloned from two severe donors, six exhibited potent neutralization against authentic SARS-CoV-2, and inhibited syncytia formation. Using peptide libraries, competition ELISA and mutagenesis of RBD, we mapped the epitopes of the neutralizing antibodies (nAbs) to three different sites on the Spike. Finally, we used combinations of nAbs targeting different immune-sites to efficiently block SARS-CoV-2 infection. Analysis of 49 healthy BCR repertoires revealed that the nAbs germline VHJH precursors comprise up to 2.7% of all VHJHs. We demonstrate that severe COVID-19 is associated with unique BCR signatures and multi-clonal neutralizing responses that are relatively frequent in the population. Moreover, our data support the use of combination antibody therapy to prevent and treat COVID-19.
Patients with inflammatory bowel disease (IBD) treated with anti-tumor-necrosis factor-alpha (TNFα) exhibited lower serologic responses one-month following the second dose of the COVID-19 BNT162b2 vaccine compared to those not treated with anti-TNFα (non-anti-TNFα) or to healthy controls (HCs). We comprehensively analyzed long-term humoral responses, including anti-spike (S) antibodies, serum inhibition, neutralization, cross-reactivity and circulating B cell six months post BNT162b2, in patients with IBD stratified by therapy compared to HCs. Subjects enrolled in a prospective, controlled, multi-center Israeli study received two BNT162b2 doses. Anti-S levels, functional activity, specific B cells, antigen cross-reactivity, anti-nucleocapsid levels, adverse events and IBD disease score were detected longitudinally. In total, 240 subjects, 151 with IBD (94 not treated with anti-TNFα and 57 treated with anti-TNFα) and 89 HCs participated. Six months after vaccination, patients with IBD treated with anti-TNFα had significantly impaired BNT162b2 responses, specifically, more seronegativity, decreased specific circulating B cells and cross-reactivity compared to patients untreated with anti-TNFα. Importantly, all seronegative subjects were patients with IBD; of those, >90% were treated with anti-TNFα. Finally, IBD activity was unaffected by BNT162b2. Altogether these data support the earlier booster dose administration in these patients.
The interactions between antibodies, SARS-CoV-2 and immune cells contribute to the pathogenesis of COVID-19 and protective immunity. To understand the differences between antibody responses in mild versus severe cases of COVID-19, we analyzed the B cell responses in patients 1.5 months post SARS-CoV-2 infection. Severe and not mild infection correlated with high titers of IgG against Spike receptor binding domain (RBD) that were capable of viral inhibition. B cell receptor (BCR) sequencing revealed two VH genes, VH3-38 and VH3-53, that were enriched during severe infection. Of the 22 antibodies cloned from two severe donors, six exhibited potent neutralization against live SARS-CoV-2, and inhibited syncytia formation. Using peptide libraries, competition ELISA and RBD mutagenesis, we mapped the epitopes of the neutralizing antibodies (nAbs) to three different sites on the Spike. Finally, we used combinations of nAbs targeting different immune-sites to efficiently block SARS-CoV-2 infection. Analysis of 49 healthy BCR repertoires revealed that the nAbs germline VHJH precursors comprise up to 2.7% of all VHJHs. We demonstrate that severe COVID-19 is associated with unique BCR signatures and multi-clonal neutralizing responses that are relatively frequent in the population. Moreover, our data support the use of combination antibody therapy to prevent and treat COVID-19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.