Osmotic properties of polysaccharides' solutions and associated biopolymer-solvent and biopolymer-biopolymer type interaction are very important from a technological point of view. The knowledge of osmotic properties of these systems provides the basis to appropriate use of polysaccharides having comply with the relevant technology functions, impart the appropriate texture and forming the sensory properties of the final product. Furthermore, an important issue is the effect of time on the osmotic properties of polysaccharides', because with time, the aforementioned effects may change. Membrane osmometry is one of the methods used in the studies of synthetic polymers to determine their average molecular mass and the degree of interaction between a polymer and a solvent. This method is successfully applied in the case of biopolymers that include polysaccharides. The existence of the osmotic pressure, formed by diffusion of solvent molecules through a semi-permeable membrane, is the basis of this method. Analysis and interpretation of osmometric research results is based on the van't Hoff equation dependency of the concentration. The second virial coefficient obtained based on this relation allows characterisation of biopolymer-solvent interactions, and thus biopolymer tendency to solvation. The third virial coefficient provides information on mutual interactions between the biopolymer molecules, as well as its tendency to aggregate.
The aim of the study was to produce gel beads under continuous conditions. Pectins obtained from black and red currants and commercial apple pectin were used as the material. For the production of gel beads, a self-designed device was used. The designed device allows for the production of gel beads in a continuous process, the properties of which are similar to those obtained in the classic, batch process. Thanks to the device, it is possible to obtain a repeatable product while reducing the workload. The produced gel beads were tested for water absorption and textural properties. The water absorption of the obtained gel capsules is strongly influenced by the pectin chain structure. Pectin beads obtained from currant pectins have a less hard structure and are more sensitive to deformation than those from apple pectin. Shorter and more branched chains of currant pectin than apple pectin form gels with a delicate structure, which strongly absorbs water, and unlike apple pectin gel, it disintegrates. The results show that the use of raw material obtained from different sources allows for obtaining products with various properties, using the same method; moreover, the used device is fully scalable and can be used in large scale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.