Poor oxygenation of solid tumours has been linked with resistance to chemo- and radio-therapy and poor patient outcomes, hence non-invasive imaging of oxygen supply and demand in tumours could improve disease staging and therapeutic monitoring. Optoacoustic tomography (OT) is an emerging clinical imaging modality that provides static images of endogenous haemoglobin concentration and oxygenation. Here, we demonstrate oxygen enhanced (OE)-OT, exploiting an oxygen gas challenge to visualise the spatiotemporal heterogeneity of tumour vascular function. We show that tracking oxygenation dynamics using OE-OT reveals significant differences between two prostate cancer models in nude mice with markedly different vascular function (PC3 & LNCaP), which appear identical in static OT. LNCaP tumours showed a spatially heterogeneous response within and between tumours, with a substantial but slow response to the gas challenge, aligned with ex vivo analysis, which revealed a generally perfused and viable tumour with marked areas of haemorrhage. PC3 tumours had a lower fraction of responding pixels compared to LNCaP with a high disparity between rim and core response. While the PC3 core showed little or no dynamic response, the rim showed a rapid change, consistent with our ex vivo findings of hypoxic and necrotic core tissue surrounded by a rim of mature and perfused vasculature. OE-OT metrics are shown to be highly repeatable and correlate directly on a per-tumour basis to tumour vessel function assessed ex vivo. OE-OT provides a non-invasive approach to reveal the complex dynamics of tumour vessel perfusion, permeability and vasoactivity in real time. Our findings indicate that OE-OT holds potential for application in prostate cancer patients, to improve delineation of aggressive and indolent disease as well as in patient stratification for chemo- and radio-therapy.
Optoacoustic tomography (OT) is now widely used in preclinical imaging; however, the precision (repeatability and reproducibility) of OT has yet to be determined. We used a commercial small-animal OT system. Measurements in stable phantoms were used to independently assess the impact of system variables on precision (using coefficient of variation, COV), including acquisition wavelength, rotational position, and frame averaging. Variables due to animal handling and physiology, such as anatomic placement and anesthesia conditions, were then assessed in healthy nude mice using the left kidney and spleen as reference organs. Temporal variation was assessed by repeated measurements over hours and days both in phantoms and in vivo. Sensitivity to small-molecule dyes was determined in phantoms and in vivo; precision was assessed in vivo using IRDye800CW. OT COV in a stable phantom was less than 2.8% across all wavelengths over 30 d. The factors with the greatest impact on signal repeatability in phantoms were rotational position and user experience, both of which still resulted in a COV of less than 4% at 700 nm. Anatomic region-of-interest size showed the highest variation, at 12% and 18% COV in the kidney and spleen, respectively; however, functional SO measurements based on a standard operating procedure showed an exceptional reproducibility of less than 4% COV. COV for repeated injections of IRDye800CW was 6.6%. Sources of variability for in vivo data included respiration rate, degree of user experience, and animal placement. Data acquired with our small-animal OT system were highly repeatable and reproducible across subjects and over time. Therefore, longitudinal OT studies may be performed with high confidence when our standard operating procedure is followed.
Optoacoustic tomography is a fast developing imaging modality, combining the high contrast available from optical excitation of tissue with the high resolution and penetration depth of ultrasound detection. Light is subject to both absorption and scattering when traveling through tissue; adequate knowledge of tissue optical properties and hence the spatial fluence distribution is required to create an optoacoustic image that is directly proportional to chromophore concentrations at all depths. Using data from a commercial multispectral optoacoustic tomography (MSOT) system, we implemented an iterative optimization for fluence correction based on a finite-element implementation of the delta-Eddington approximation to the Radiative Transfer Equation (RTE). We demonstrate a linear relationship between the image intensity and absorption coefficients across multiple wavelengths and depths in phantoms. We also demonstrate improved feature visibility and spectral recovery at depth in phantoms and with in vivo measurements, suggesting our approach could in the future enable quantitative extraction of tissue absorption coefficients in biological tissue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.