The signals directing primordial germ cell (PGC) migration in vertebrates are largely unknown. We demonstrate that sdf-1 mRNA is expressed in locations where PGCs are found and toward which they migrate in wild-type as well as in mutant embryos in which PGC migration is abnormal. Knocking down SDF-1 or its receptor CXCR4 results in severe defects in PGC migration. Specifically, PGCs that do not receive the SDF-1 signal exhibit lack of directional movement toward their target and arrive at ectopic positions within the embryo. Finally, we show that the PGCs can be attracted toward an ectopic source of the chemokine, strongly suggesting that this molecule provides a key directional cue for the PGCs.
Primordial germ cell (PGC) migration in zebrafish is directed by the chemokine SDF-1a that activates its receptor CXCR4b. Little is known about the molecular mechanisms controlling the distribution of this chemoattractant in vivo. We demonstrate that the activity of a second SDF-1/CXCL12 receptor, CXCR7, is crucial for proper migration of PGCs toward their targets. We show that CXCR7 functions primarily in the somatic environment rather than within the migrating cells. In CXCR7 knocked-down embryos, the PGCs exhibit a phenotype that signifies defects in SDF-1a gradient formation as the cells fail to polarize effectively and to migrate toward their targets. Indeed, somatic cells expressing CXCR7 show enhanced internalization of the chemokine suggesting that CXCR7 acts as a sink for SDF-1a, thus allowing the dynamic changes in the transcription of sdf-1a to be mirrored by similar dynamics at the protein level.
The molecular and cellular mechanisms governing cell motility and directed migration in response to the chemokine SDF-1 are largely unknown. Here, we demonstrate that zebrafish primordial germ cells whose migration is guided by SDF-1 generate bleb-like protrusions that are powered by cytoplasmic flow. Protrusions are formed at sites of higher levels of free calcium where activation of myosin contraction occurs. Separation of the acto-myosin cortex from the plasma membrane at these sites is followed by a flow of cytoplasm into the forming bleb. We propose that polarized activation of the receptor CXCR4 leads to a rise in free calcium that in turn activates myosin contraction in the part of the cell responding to higher levels of the ligand SDF-1. The biased formation of new protrusions in a particular region of the cell in response to SDF-1 defines the leading edge and the direction of cell migration.
Cell migration is central to embryonic development, homeostasis and disease, processes in which cells move as part of a group or individually. Whereas the mechanisms controlling single-cell migration in vitro are relatively well understood, less is known about the mechanisms promoting the motility of individual cells in vivo. In particular, it is not clear how cells that form blebs in their migration use those protrusions to bring about movement in the context of the three-dimensional cellular environment. Here we show that the motility of chemokine-guided germ cells within the zebrafish embryo requires the function of the small Rho GTPases Rac1 and RhoA, as well as E-cadherin-mediated cell-cell adhesion. Using fluorescence resonance energy transfer we demonstrate that Rac1 and RhoA are activated in the cell front. At this location, Rac1 is responsible for the formation of actin-rich structures, and RhoA promotes retrograde actin flow. We propose that these actin-rich structures undergoing retrograde flow are essential for the generation of E-cadherin-mediated traction forces between the germ cells and the surrounding tissue and are therefore crucial for cell motility in vivo.
The migration of zebrafish primordial germ cells (PGCs) is directed by SDF-1a and serves as a model for long-range chemokine-guided cell migration. Whereas the development and migration of zebrafish PGCs have been studied in great detail starting at mid-gastrulation stages when the cells exhibit guided active migration [7-8 hours post fertilization (hpf)], earlier stages have not yet been examined. Here we show that the PGCs acquire competence to respond to the chemokine following discrete maturation steps. Using the promoter of the novel gene askopos and RNA elements of nanos1 to drive GFP expression in PGCs, we found that immediately after their specification (about 3 hpf) PGCs exhibit simple cell shape. This stage is followed by a phase at which the cells assume complex morphology yet they neither change their position nor do they respond to SDF-1a. During the third phase, a transition into a `migratory stage' occurs as PGCs become responsive to directional cues provided by somatic cells secreting the chemokine SDF-1a. This transition depends on zygotic transcription and on the function of the RNA-binding protein Dead end and is correlated with down regulation of the cell adhesion molecule E-cadherin. These distinctive morphological and molecular alterations could represent a general occurrence in similar processes critical for development and disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.