Mutations in human genes can be responsible for inherited genetic disorders and cancer. Mutations can arise due to environmental factors or spontaneously. It has been shown that certain DNA sequences are more prone to mutate. These sites are termed hotspots and exhibit a higher mutation frequency than expected by chance. In contrast, DNA sequences with lower mutation frequencies than expected by chance are termed coldspots. Mutation hotspots are usually derived from a mutation spectrum, which reflects particular population where an effect of a common ancestor plays a role. To detect coldspots/hotspots unaffected by population bias, we analysed the presence of germline mutations obtained from HGMD database in the 5-nucleotide segments repeatedly occurring in genes associated with common inherited disorders, in particular, the PAH, LDLR, CFTR, F8, and F9 genes. Statistically significant sequences (mutational motifs) rarely associated with mutations (coldspots) and frequently associated with mutations (hotspots) exhibited characteristic sequence patterns, e.g. coldspots contained purine tract while hotspots showed alternating purine-pyrimidine bases, often with the presence of dinucleotide. Using molecular dynamics simulations and free energy calculations, we analysed the global bending properties of two selected coldspots and two hotspots with a mismatch. We observed that the coldspots were inherently more flexible than the hotspots. We assume that this property might be critical for effective mismatch repair as DNA with a mutation recognized by MutSα protein is noticeably bent.
Antibodies against Escherichia coli-expressed uncoupling protein-2 (UCP2) and uncoupling protein-3 (UCP3) were raised by operating the blotted proteins into the spleen of minipigs. The antisera reacted more intensively with the recombinant UCP2 and UCP3 than with uncoupling protein-1 (UCP1) isolated from brown adipose tissue. Moreover, anti-UCP2 and cross-reacting anti-UCP3 antibodies identified the presence of the UCP2/3 antigen in isolated mitochondria from rat heart, rat kidney, rat brain, rabbit epididymal white adipose tissue, hamster brown adipose tissue, and rabbit skeletal muscle. It has been concluded that UCP2 is expressed in these tissues (UCP3 in skeletal muscle); however their existence in mitochondria had not previously been demonstrated.z 1999 Federation of European Biochemical Societies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.