White-nose syndrome (WNS) has caused alarming declines of North American bat populations in the 5 years since its discovery. Affected bats appear to starve during hibernation, possibly because of disruption of normal cycles of torpor and arousal. The importance of hydration state and evaporative water loss (EWL) for influencing the duration of torpor bouts in hibernating mammals recently led to "the dehydration hypothesis," that cutaneous infection of the wing membranes of bats with the fungus Geomyces destructans causes dehydration which in turn, increases arousal frequency during hibernation. This hypothesis predicts that uninfected individuals of species most susceptible to WNS, like little brown bats (Myotis lucifugus), exhibit high rates of EWL compared to less susceptible species. We tested the feasibility of this prediction using data from the literature and new data quantifying EWL in Natterer's bats (Myotis nattereri), a species that is, like other European bats, sympatric with G. destructans but does not appear to suffer significant mortality from WNS. We found that little brown bats exhibited significantly higher rates of normothermic EWL than did other bat species for which comparable EWL data are available. We also found that Natterer's bats exhibited significantly lower rates of EWL, in both wet and dry air, compared with values predicted for little brown bats exposed to identical relative humidity (RH). We used a population model to show that the increase in EWL required to cause the pattern of mortality observed for WNS-affected little brown bats was small, equivalent to a solitary bat hibernating exposed to RH of ∼95%, or clusters hibernating in ∼87% RH, as opposed to typical near-saturation conditions. Both of these results suggest the dehydration hypothesis is plausible and worth pursuing as a possible explanation for mortality of bats from WNS.
SUMMARY
Two decades ago D. J. Keegan reported results on Egyptian fruit bats(Rousettus aegyptiacus, Megachiroptera) that were strangely at odds with the prevailing understanding of how glucose is absorbed in the mammalian intestine. Keegan's in vitro tests for glucose transport against a concentration gradient and with phloridzin inhibition in fruit bat intestine were all negative, although he used several different tissue preparations and had positive control results with laboratory rats. Because glucose absorption by fruit bats is nonetheless efficient, Keegan postulated that the rapid glucose absorption from the fruit bat intestine is not through the enterocytes, but must occur via spaces between the cells. Thus, we hypothesized that absorption of water-soluble compounds that are not actively transported would be extensive in these bats, and would decline with increasing molecular mass in accord with sieve-like paracellular absorption. We did not presume from Keegan's studies that there is no Na+-coupled, mediated sugar transport in these bats, and our study was not designed to rule it out, but rather to quantify the level of possible non-mediated absorption. Using a standard pharmacokinetic technique, we fed,or injected intraperitonealy, the metabolically inert carbohydrates l-rhamnose (molecular mass=164 Da) and cellobiose (molecular mass=342 Da), which are absorbed by paracellular uptake, and 3-O-methyl-d-glucose (3OMd-glucose), a d-glucose analog that is absorbed via both mediated(active) and paracellular uptake. As predicted, the bioavailability of paracellular probes declined with increasing molecular mass (rhamnose,62±4%; cellobiose, 22±4%) and was significantly higher in bats than has been reported for rats and other mammals. In addition, fractional absorption of 3OMd-glucose was high (91±2%). We estimated that Egyptian fruit bats rely on passive, paracellular absorption for the majority of their glucose absorption (at least 55% of 3OMd-glucose absorption), much more than in non-flying mammals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.