The hot deformation behavior of selected non-alloyed carbon steels was investigated by isothermal continuous uniaxial compression tests. Based on the analysis of experimentally determined flow stress curves, material constants suitable for predicting peak flow stress σp, peak strain εp and critical strain εcrDRX necessary to induce dynamic recrystallization and the corresponding critical flow stresses σcrDRX were determined. The validity of the predicted critical strains εcrDRX was then experimentally verified. Fine dynamically recrystallized grains, which formed at the boundaries of the original austenitic grains, were detected in the microstructure of additionally deformed specimens from low-carbon investigated steels. Furthermore, equations describing with perfect accuracy a simple linear dependence of the critical strain εcrDRX on peak strain εp were derived for all investigated steels. The determined hot deformation activation energy Q decreased with increasing carbon content (also with increasing carbon equivalent value) in all investigated steels. A logarithmic equation described this dependency with reasonable accuracy. Individual flow stress curves of the investigated steels were mathematically described using the Cingara and McQueen model, while the predicted flow stresses showed excellent accuracy, especially in the strains ranging from 0 to εp.
The combined effect of deformation temperature and strain value on the continuous cooling transformation (CCT) diagram of low-alloy steel with 0.23% C, 1.17% Mn, 0.79% Ni, 0.44% Cr, and 0.22% Mo was studied. The deformation temperature (identical to the austenitization temperature) was in the range suitable for the wire rolling mill. The applied compressive deformation corresponded to the true strain values in an unusually wide range. Based on the dilatometric tests and metallographic analyses, a total of five different CCT diagrams were constructed. Pre-deformation corresponding to the true strain of 0.35 or even 1.0 had no clear effect on the austenite decomposition kinetics at the austenitization temperature of 880 °C. During the long-lasting cooling, recrystallization and probably coarsening of the new austenitic grains occurred, which almost eliminated the influence of pre-deformation on the temperatures of the diffusion-controlled phase transformations. Decreasing the deformation temperature to 830 °C led to the significant acceleration of the austenite → ferrite and austenite → pearlite transformations due to the applied strain of 1.0 only in the region of the cooling rate between 3 and 35 °C·s−1. The kinetics of the bainitic or martensitic transformation remained practically unaffected by the pre-deformation. The acceleration of the diffusion-controlled phase transformations resulted from the formation of an austenitic microstructure with a mean grain size of about 4 µm. As the analysis of the stress–strain curves showed, the grain refinement was carried out by dynamic and metadynamic recrystallization. At low cooling rates, the effect of plastic deformation on the kinetics of phase transformations was indistinct.
The deformation behaviour of a coarse-grained as-cast medium-carbon steel, alloyed with 1.2% Mn, 0.8% Cr and 0.2% Mo, was studied by uniaxial compression tests for the strain rates of 0.02 s−1–20 s−1 in the unusually wide range of temperatures (650–1280 °C), i.e., in various phase regions including the region with predominant bainite content (up to the temperature of 757 °C). At temperatures above 820 °C, the structure was fully austenitic. The hot deformation activation energies of 648 kJ·mol−1 and 364 kJ·mol−1 have been calculated for the temperatures ≤770 °C and ≥770 °C, respectively. This corresponds to the significant increase of flow stress in the low-temperature bainitic region. Unique information on the hot deformation behaviour of bainite was obtained. The shape of the stress-strain curves was influenced by the dynamic recrystallization of ferrite or austenite. Dynamically recrystallized austenitic grains were strongly coarsened with decreasing strain rate and growing temperature. For the austenitic region, the relationship between the peak strain and the Zener–Hollomon parameter has been derived, and the phenomenological constitutive model describing the flow stress depending on temperature, true strain rate and true strain was developed. The model can be used to predict the forming forces in the seamless tubes production of the given steel.
It is not realistic to optimize the roll pass design of profile rolling mills, which typically roll hundreds of profiles, using physical modelling or operational rolling. The use of reliable models of microstructure evolution is preferable here. Based on the mathematical equations describing the microstructure evolution during hot rolling, a modified microstructure evolution model was presented that better accounts for the influence of strain-induced precipitation (SIP) on the kinetics of static recrystallization. The time required for half of the structure to soften, t0.5, by static recrystallization was calculated separately for both situations in which strain-induced precipitation occurred or did not occur. On this basis, the resulting model was more sensitive to the description of grain coarsening in the high-rolling-temperature region, which is a consequence of the rapid progress of static recrystallization and the larger interpass times during rolling on cross-country and continuous mills. The modified model was verified using a plain strain compression test (PSCT) simulation of rolling a 100-mm-diameter round bar performed on the Hydrawedge II hot deformation simulator (HDS-20). Four variants of simulations were performed, differing in the rolling temperature in the last four passes. For comparison with the outputs of the modified model, an analysis of the austenite grain size after rolling was performed using optical metallography. For indirect comparison with the model outputs, the SIP initiation time was determined based on the NbX precipitate size distribution obtained by TEM. Using the PSCT and the outputs from the modified microstructure evolution model, it was found that during conventional rolling, strain-induced precipitation occurs after the last pass and thus does not affect the austenite grain size. By lowering the rolling temperature, it was possible to reduce the grain size by up to 56 μm, while increasing the mean flow stress by a maximum of 74%. The resulting grain size for all four modes was consistent with the operating results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.