Immersive virtual reality (iVR) devices are rapidly becoming an important part of our lives and forming a new way for people to interact with computers and each other. The impact and consequences of this innovative technology have not yet been satisfactory explored. This empirical study investigated the cognitive and social aspects of collaboration in a shared, immersive virtual reality. A unique application for implementing a collaborative immersive virtual environment (CIVE) was developed by our interdisciplinary team as a software solution for educational purposes, with two scenarios for learning about hypsography, i.e., explanations of contour line principles. Both scenarios allow switching between a usual 2D contour map and a 3D model of the corresponding terrain to increase the intelligibility and clarity of the educational content. Gamification principles were also applied to both scenarios to augment user engagement during the completion of tasks. A qualitative research approach was adopted to obtain a deep insight into the lived experience of users in a CIVE. It was thus possible to form a deep understanding of very new subject matter. Twelve pairs of participants were observed during their CIVE experience and then interviewed either in a semistructured interview or a focus group. Data from these three research techniques were analyzed using interpretative phenomenological analysis, which is research method for studying individual experience. Four superordinate themes—with detailed descriptions of experiences shared by numerous participants—emerged as results from the analysis; we called these (1) Appreciation for having a collaborator, (2) The Surprising “Fun with Maps”, (3) Communication as a challenge, and (4) Cognition in two realities. The findings of the study indicate the importance of the social dimension during education in a virtual environment and the effectiveness of dynamic and interactive 3D visualization.
Many university-taught courses moved to online form since the outbreak of the global pandemic of coronavirus disease (COVID-19). Distance learning has become broadly used as a result of the widely applied lockdowns, however, many students lack personal contact in the learning process. A classical web-based distance learning does not provide means for natural interpersonal interaction. The technology of immersive virtual reality (iVR) may mitigate this problem. Current research has been aimed mainly at specific instances of collaborative immersive virtual environment (CIVE) applications for learning. The fields utilizing iVR for knowledge construction and skills training with the use of spatial visualizations show promising results. The objective of this study was to assess the effectiveness of collaborative and individual use of iVR for learning geography, specifically training in hypsography. Furthermore, the study’s goals were to determine whether collaborative learning would be more effective and to investigate the key elements in which collaborative and individual learning were expected to differ–motivation and use of cognitive resources. The CIVE application developed at Masaryk University was utilized to train 80 participants in inferring conclusions from cartographic visualizations. The collaborative and individual experimental group underwent a research procedure consisting of a pretest, training in iVR, posttest, and questionnaires. A statistical comparison between the geography pretest and posttest for the individual learning showed a significant increase in the score (p = 0.024, ES = 0.128) and speed (p = 0.027, ES = 0.123), while for the collaborative learning, there was a significant increase in the score (p<0.001, ES = 0.333) but not in speed (p = 1.000, ES = 0.000). Thus, iVR as a medium proved to be an effective tool for learning geography. However, comparing the collaborative and individual learning showed no significant difference in the learning gain (p = 0.303, ES = 0.115), speed gain (p = 0.098, ES = 0.185), or performance motivation (p = 0.368, ES = 0.101). Nevertheless, the collaborative learning group had significantly higher use of cognitive resources (p = 0.046, ES = 0.223) than the individual learning group. The results were discussed in relation to the cognitive load theories, and future research directions for iVR learning were proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.