AbstractThe aim of the study was to present numerical strength analysis of the virtual knee and hip joints for the most popular tribological pairs used in prosthetic arthroplasty based on the Finite Elements Method. FEM makes it possible to calculate the stress in particular elements of the tested models. The research was dedicated to elucidate abrasive wear mechanisms during surface grinding of a polyethylene UHMW and a metal elements of endoprostheses. Strong adhesion was found between the abrasives and workpieces, which might be attributed to the chemical bonding between the abrasives and workpieces in synovial liquid. Therefore, the wear of UHMWPE is both chemical and physical. Abrasive wear effect, as a result of the abrasive wear process, is associated with material loss of the element surface layer due to the separation of particles by fissuring, stretching, or micro-cutting.
Abstract. The paper applies to the problem connected with analytical modeling of operational parameters of bio-bearings and endoprostheses. The mentioned model takes into consideration the influence of velocity and pressure on the value of the friction coefficient. It also presents the results of the tests conducted to define parameters of cooperation between different materials applied in implantology.
The paper presents the numerical analysis of stress and strain occurring in the most wearable parts of hip and knee joints endoprostheses. The complexity of the processes taking place in both, natural and artificial joints, makes it necessary to conduct the analysis on the 3D model based on already existing mathematical models. Most of the mechanical failures in alloplasty are caused by material fatigue. To cut down the risk of it, we can either increase the fatigue resistance of the material or decrease the load strain. It is extremelly important to indicate the areas where damage or premature wear may occur. The Finite Elements Method makes it possible to calculate the stress and strain in particular elements of the tested models. All presented numerical calculations define quality conclusions concerning the influence of some parameters of endoprostheses on the values of stress and strain that are formed in polyethylene parts of endoprotheses of hip and knee joints. The obtained results help to reveal “weak points” in examined models and thus, counteract the subsequent effects resulting from premature wear of endoprosthesis elements. The numerical analysis was performed basing on the finite elements method using Autodesk Simulation Mechanical 2017 software and the ADINA 7.5.1.
Abstract. The paper presents the numerical analysis of stress and strain occuring in the most wearable parts of hip and knee joint endoprostheses. In the hip joint that would be the pair: the head -cup, and in the knee joint: sled -insert. The complexity of the processes taking place both in natural and artificial joint make is necessary to conduct the analysis on the 3D model and basing on already existing mathematical models. Finite elements method makes it possible to calculate the stress in particular elements of the tested model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.