Consistent formulations of relativistic viscous hydrodynamics involve short-lived modes, leading to asymptotic rather than convergent gradient expansions. In this Letter we consider the Müller-Israel-Stewart theory applied to a longitudinally expanding quark-gluon plasma system and identify hydrodynamics as a universal attractor without invoking the gradient expansion. We give strong evidence for the existence of this attractor and then show that it can be recovered from the divergent gradient expansion by Borel summation. This requires careful accounting for the short-lived modes which leads to an intricate mathematical structure known from the theory of resurgence.
The success of relativistic hydrodynamics as an essential part of the phenomenological description of heavy-ion collisions at RHIC and the LHC has motivated a significant body of theoretical work concerning its fundamental aspects. Our review presents these developments from the perspective of the underlying microscopic physics, using the language of quantum field theory, relativistic kinetic theory, and holography. We discuss the gradient expansion, the phenomenon of hydrodynamization, as well as several models of hydrodynamic evolution equations, highlighting the interplay between collective long-lived and transient modes in relativistic matter. Our aim to provide a unified presentation of this vast subject-which is naturally expressed in diverse mathematical languages-has also led us to include several new results on the large-order behaviour of the hydrodynamic gradient expansion.
Maldacena's duality between conformal field theories and supergravity is applied to some conformal invariant models with 8 supercharges appearing in the F-theory moduli space on a locus of constant coupling. This includes Sp(2N ) gauge theories describing the worldvolume dynamics of D3-branes in the presence of D7-branes and an orientifold plane. Other examples of this kind are models with exceptional global symmetries which have no perturbative field theory description. In all these cases the duality is used to describe perturbations by primary marginal and relevant operators.
HUTP-98/A037hep-th/9805096 *
We explore the transition to hydrodynamics in a weakly-coupled model of quark-gluon plasma given by kinetic theory in the relaxation time approximation with conformal symmetry. We demonstrate that the gradient expansion in this model has a vanishing radius of convergence due to the presence of a transient (nonhydrodynamic) mode, in a way similar to results obtained earlier in strongly-coupled gauge theories. This suggests that the mechanism by which hydrodynamic behaviour emerges is the same, which we further corroborate by a novel comparison between solutions of different weakly and strongly coupled models. However, in contrast with other known cases, we find that not all the singularities of the analytic continuation of the Borel transform of the gradient expansion correspond to transient excitations of the microscopic system: some of them reflect analytic properties of the kinetic equation when the proper time is continued to complex values.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.